
QuakeMigrate
Release 1.0.2

QuakeMigrate developers

Oct 21, 2023

CONTENTS

1 Citation 3

2 Contact 5

3 License 7

4 Contents: 9

Python Module Index 111

Index 113

i

ii

QuakeMigrate, Release 1.0.2

QuakeMigrate is a Python package for automatic earthquake detection and location using waveform migration and
stacking.

QuakeMigrate uses a waveform migration and stacking algorithm to search for coherent seismic phase arrivals across
a network of instruments. It produces, from raw data, a catalogue of earthquakes with locations, origin times, phase
arrival picks, and local magnitude estimates, as well as rigorous estimates of the associated uncertainties.

The package has been built with a modular architecture, providing the potential for extension and adaptation at numer-
ous entry points. This includes, but is not limited to:

• the calculation or import of traveltime grids

• the choice of algorithm used to identify phase arrivals (for example by kurtosis, cross-covariance analysis be-
tween multiple components, machine learning techniques and more)

• the stacking function used to combine onset functions

• the algorithm used to perform phase picking

The source code for the project is hosted on .

This package is written by the QuakeMigrate developers, and is distributed under the GPLv3 License, Copyright
QuakeMigrate developers 2020–2023.

CONTENTS 1

QuakeMigrate, Release 1.0.2

2 CONTENTS

CHAPTER

ONE

CITATION

If you use this package in your work, please cite the following conference presentation:

Winder, T., Bacon, C.A., Smith, J.D., Hudson, T., Greenfield, T. and White, R.S., 2020. QuakeMigrate: a Modular,
Open-Source Python Package for Automatic Earthquake Detection and Location. AGUFM, 2020. pp.S38-0013.

as well as the relevant version of the source code on Zenodo.

We hope to have a publication coming out soon:

Winder, T., Bacon, C.A., Smith, J.D., Hudson, T.S., Drew, J., and White, R.S. QuakeMigrate: a Python Package for
Automatic Earthquake Detection and Location Using Waveform Migration and Stacking. (to be submitted to Seismica).

3

https://doi.org/10.5281/zenodo.4442749

QuakeMigrate, Release 1.0.2

4 Chapter 1. Citation

CHAPTER

TWO

CONTACT

You can contact us directly at quakemigrate.developers@gmail.com

Any additional comments/questions can be directed to:

• Tom Winder - tom.winder@esc.cam.ac.uk

• Conor Bacon - conor.bacon@cantab.net

5

mailto:quakemigrate.developers@gmail.com
mailto:tom.winder@esc.cam.ac.uk
mailto:conor.bacon@cantab.net

QuakeMigrate, Release 1.0.2

6 Chapter 2. Contact

CHAPTER

THREE

LICENSE

This package is written and maintained by the QuakeMigrate developers, Copyright QuakeMigrate developers
2020–2023. It is distributed under the GPLv3 License. Please see the LICENSE for a complete description of the
rights and freedoms that this provides the user.

7

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

8 Chapter 3. License

CHAPTER

FOUR

CONTENTS:

4.1 Installation

QuakeMigrate is a predominantly Python package with some routines written and optimised in C. These are built and
linked to QuakeMigrate at installation - if installing from source you will need to ensure that there is a suitable compiler
available (see C compilers).

However, most users can bypass this step by installing QuakeMigrate using pip.

4.1.1 Supported operating systems

QuakeMigrate was developed and tested on Ubuntu 16.04/18.04, with the intention of being “platform agnostic”. As
of March 2023, the package has been successfully built and run on:

• Ubuntu 16.04/18.04/20.04/22.04

• Red Hat Enterprise Linux

• Debian

• Windows 10

• macOS High Sierra 10.13, Mojave 10.14, Catalina 10.15, Big Sur 11, Monterey 12 (including M1)

4.1.2 Prerequisites

QuakeMigrate supports Python 3.8 or newer (3.8/3.9/3.10/3.11). We recommend using Anaconda as a package manager
and environment management system to isolate and install the specific dependencies of QuakeMigrate.

Instructions for downloading and installing Anaconda can be found here. If drive space is limited, consider using
Miniconda instead, which ships with a minimal collection of useful packages.

4.1.3 Installation via pip

The simplest way to get a working copy of QuakeMigrate is to install it from the Python Package Index (PyPI) using
pip (the Python package installer).

To do this you first need to set up an enivironment. We recommend creating a minimal environment initially:

conda create --name quakemigrate python=3.9
conda activate quakemigrate

9

https://docs.anaconda.com/anaconda/install/

QuakeMigrate, Release 1.0.2

All other dependencies will be handled during the installation of QuakeMigrate. After activating your environment,
type the following command into terminal:

pip install quakemigrate

This will install QuakeMigrate and its explicit dependencies!

Note: Installing the package this way will not provide you with the examples. These can be retrieved directly from
the GitHub repository (see Testing your installation).

The full list of dependencies is:

• matplotlib

• numpy

• obspy >= 1.3

• pandas

• pyproj >= 2.5

• scipy

Note: We are currently not pinning the version of any dependencies. We aim to keep on top of any new syntax changes
etc. as new versions of these packages are released - but please submit an issue if you come across something!

If you want to explore the example notebooks, you will also need to install ipython and jupyter. This can be done with
conda (making sure your environment is still activated) as:

conda install ipython jupyter

Finally, if you wish to apply QuakeMigrate in situations where the velocity is not uniform for each phase (including for
the provided Volcanotectonic_Iceland usage example), you will need to install a traveltime solver.

4.1.4 Installing a traveltime solver

In addition to the explicit dependencies, QuakeMigrate includes wrapper functions that use NonLinLoc and scikit-fmm
as backends for producing 1-D traveltime lookup tables (see The traveltime lookup table).

Users can choose to install one or both of these software packages, which will enable them to use the corresponding
wrapper function. (If you already have NonLinLoc installed, you may skip this step!)

NonLinLoc

Obtaining binaries

To download, unpack, and compile NonLinLoc, Linux and most macOS users can use:

Note: In order to install NonLinLoc, you will need an accessible C compiler, such as gcc or clang (see C compilers).

10 Chapter 4. Contents:

http://alomax.free.fr/nlloc/
https://pythonhosted.org/scikit-fmm/

QuakeMigrate, Release 1.0.2

Warning: The NLLoc MakeFile specifies the compiler as gcc. For macOS users this means that the system
(XCode) clang compiler will be used even if you activate the relevant environment for an alternative. To change
this, edit the MakeFile to specify clang instead of gcc.

curl http://alomax.free.fr/nlloc/soft7.00/tar/NLL7.00_src.tgz -o NLL7.00_src.tgz
tar -xzvf NLL7.00_src.tgz
cd src
mkdir bin; export MYBIN=./bin
make -R all

If this is not successful, macOS users (at least those using systems with an Intel CPU) can instead download the binaries
directly:

curl http://alomax.free.fr/nlloc/soft7.00/tar/NLL7.00_bin_x86_64-apple-darwin14.tgz -o␣
→˓NLL7.00_bin_x86_64-apple-darwin14.tgz
tar -xvzf NLL7.00_bin_x86_64-apple-darwin14.tgz

Alternatively, for newer versions of NonLinLoc (and instructions for installation using CMake) see the instructions on
the NonLinLoc GitHub page.

Adding to the system path

Once you have successfully obtained the binary executables, we recommend you add the newly created bin directory
to your system path. For Unix systems, this can be done by adding the following to your .bashrc file (for Linux
users), or either .zshrc or .bash_profile file (for macOS - use echo $SHELL to check your default login shell, and
therefore the appropriate file to use). This file is typically found in your home directory, ~/):

export PATH=/path/to/nonlinloc/bin:$PATH

replacing the /path/to/nonlinlocwith the path to where you downloaded or installed NonLinLoc. Save the changes
to your .bashrc, .zshrc or .bash_profile file, and open a new terminal window to activate the change. This will
allow your shell to access the Vel2Grid and Grid2Time programs from anywhere. To test this has worked, type:

which Grid2Time

This should return /path/to/nonlinloc/bin/Grid2Time, as described above.

Alternatively, if you do not wish to add the NonLinLoc executables to your system path, you can explicitly specify
the nlloc_path variable when using NonLinLoc to generate a QuakeMigrate lookup table (see The traveltime lookup
table).

scikit-fmm

Note: In order to install scikit-fmm, you will need an accessible C++ compiler, such as gxx or clangxx (see C compil-
ers).

scikit-fmm is a 3rd-party Python package which implements the fast-marching method. It can be installed using:

pip install scikit-fmm

It can also be installed along with the rest of package if installing from source (see Other installation methods).

4.1. Installation 11

https://github.com/alomax/NonLinLoc

QuakeMigrate, Release 1.0.2

4.1.5 Other installation methods

From source

Note: In order to install from source, you will need an accessible C compiler, such as gcc or clang (see C compilers).

Clone the repository from our GitHub (note: you will need git installed on your system), or alternatively download the
source code directly through the GitHub web interface. Once you have a local copy, navigate to the new QuakeMigrate
directory.

You can build a complete environment using the environment.yml file which can be found in the top level of the
cloned repository.

conda env create -f environment.yml
conda activate quakemigrate

Finally, you can install the package (making sure your environment is activated) by running:

pip install .

You can optionally pass a -e argument to install the package in ‘editable’ mode.

If you wish to use scikit-fmm, you can install it here as an optional package using:

pip install .[fmm]
or for zsh users:
pip install .\[fmm]

You should now be able to import quakemigrate within a Python session:

Warning: You should try this import in any directory that is not the root of the git repository (i.e. QuakeMigrate/
. Here, the local quakemigrate directory will override the version of QuakeMigrate installed in your environment
site-packages!

cd # Moving out of QuakeMigrate directory - see warning above!
python
>>> import quakemigrate
>>> quakemigrate.__version__

If successful, this should return ‘1.0.2’.

Note: If you wish to use NonLinLoc as a traveltime solver, you will need to install that as detailed above.

12 Chapter 4. Contents:

https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/QuakeMigrate/quakemigrate

QuakeMigrate, Release 1.0.2

conda install

We hope to link the package with the conda forge soon, after which you will be able to use the following command to
install the package:

conda install -c conda-forge quakemigrate

4.1.6 Testing your installation

In order to test your installation, you will need to have cloned the GitHub repository (see installation from source).
This will ensure you have all of the required benchmarked data (which is not included in pip/conda installs). It is also
recommended that you install NonLinLoc, which is required for the Volcanotectonic_Iceland example.

To run the tests, navigate to QuakeMigrate/tests and run the test scripts. First, test all packages have correctly
installed and you can import QuakeMigrate:

python test_import.py

This may output some warning messages about deprecations - so long as the final output line says “OK” and not
“FAILED”, these aren’t an issue.

Note: Check if there is a message about matplotlib backends - there ought to be a suitable backend (e.g. macOSX,
Qt, or Tk), but there is a chance you might not have any. If this warning is present, see matplotlib backends.

Next, run the examples.

Note: This requires NonLinLoc to be installed. If you have not installed (or can not install) NonLinLoc, you may
edit the run_test_examples.py script to only run the Icequake_Iceland example by commenting out the relevant
section.

python run_test_examples.py

This script collates and runs the scripts for each stage in the Icequake_Iceland and Volcanotectonic_Iceland
examples. This process will take a number of minutes. Once this has completed successfully, run:

python test_benchmarks.py

Note: If you edited the run_test_examples.py script to only run the Icequake_Iceland example, you will also
need to edit the test_benchmarks.py script to reflect this, otherwise the test will report as failed!

If your installation is working as intended, this should execute with no failures.

4.1. Installation 13

QuakeMigrate, Release 1.0.2

4.1.7 C compilers

In order to install and use QuakeMigrate and/or NonLinLoc & scikit-fmm from source, you will need a C compiler.

If you already have a suitable compiler (e.g. gcc, MSVC, clang) at the OS level, then you can proceed with installation.
If this fails, then read on for tips to overcome common issues!

Checking for a C compiler

On Linux or macOS, to check if you have a C compiler, open a terminal and type:

which gcc
gcc --version

If a compiler is present, the first command will return /usr/bin/gcc. However, this does not guarantee it is present!
The second command will confirm this.

On Linux the second command should output something like:

gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

As long as the version is relatively recent (version 9 or later), you should be good to go. To additionally confirm that
you have a C++ compiler installed, type:

which g++
g++ --version

For which you should obtain a similar result.

On macOS it will be obvious if the compiler is not actually installed – you will be faced with a prompt to install the
Xcode Command Line Tools. You can go ahead and install this (press Install and wait for the process to complete).
If these are already installed, the second command should output something like:

Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-
→˓dir=/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include/c++/4.2.1
Apple clang version 12.0.5 (clang-1205.0.22.11)
Target: x86_64-apple-darwin20.5.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin

Warning: Even if clang is installed, it may not have all necessary libraries included. See OpenMP on macOS.

Note that this indicates that the system compiler is clang, and that the accompanying C++ compiler is also installed.
These are all supplied as part of the Xcode Command Line Tools (see e.g. here for a rundown).

If you do not have a compiler, or to be sure, we provide a simple guide for Linux, macOS and Windows operating
systems below.

Note: In order to build the (optional) dependency scikit-fmm you will need a C++ compiler (e.g. gxx, MSVC, clangxx).
This can also be done either at the OS level, or using conda (see guidance on the conda compiler tools page, linked

14 Chapter 4. Contents:

https://mac.install.guide/commandlinetools/index.html

QuakeMigrate, Release 1.0.2

below).

Linux

If you have root access, the simplest route is to install gcc and gxx at system-level. You should search for the correct
way to do this for your Linux Distribution. For example, on Ubuntu you would type:

sudo apt-get install build-essential

This includes gcc, g++ as well as make. The commands will differ on other distros (CentOS, Red Hat, etc.).

Alternatively, you can install gcc and g++ through conda. Make sure you have activated your environment, then type:

conda install -c conda-forge gcc_linux-64 gxx_linux-64

You can test this was successful with the same procedure detailed above. Once installed, you can proceed with the
QuakeMigrate installation from source.

macOS

By default, there is no C compiler included with macOS. If you have previously installed the Xcode Command Line
Tools (via the web or the App Store), the clang compiler will be installed. However, this may not include all necessary
libraries to install QuakeMigrate (see OpenMP on macOS).

Whether you already have Xcode installed or not, there are two options to install what is required: the user can either
install all dependencies through conda - noting that they will only be available in that specific environment - or using
HomeBrew. We generally recommend using conda, unless the user is already familiar with brew (in which case, see
brew).

OpenMP on macOS

The default C compiler on macOS does not include support for OpenMP. This will result in the following error during
installation from source:

ld: library not found for -lomp
clang: error: linker command failed with exit code 1 (use -v to see invocation)
error: command '/usr/bin/clang' failed with exit code 1

As above, this can either be solved with conda or brew.

conda

First create and/or activate your environment:

conda create -n quakemigrate python=3.9 # if not already created
conda activate quakemigrate # replace with alternative environment name if desired

Then use conda to install the compiler (along with the OpenMP libraries). Note the syntax is different if your machine
is running on an Apple Silicon (M1, M2, etc.) chip:

4.1. Installation 15

https://docs.conda.io/projects/conda-build/en/latest/resources/compiler-tools.html
https://brew.sh/

QuakeMigrate, Release 1.0.2

conda install -c conda-forge llvm-openmp clang_osx-64 clangxx_osx-64 # Intel chip
conda install -c conda-forge llvm-openmp clang_osx-arm64 clangxx_osx-arm64 # Apple␣
→˓Silicon chip (M1, M2 etc.)

Note: If you did not already have Xcode Command Line Tools installed, you will be prompted to install them now.
Click Install and wait for installation to complete.

You should now open a fresh terminal, and activate your environment. To test the installation was successful, type:

echo $CC
$CC --version

This should return something like:

echo $CC
x86_64-apple-darwin13.4.0-clang
$CC --version
clang version 14.0.6
Target: x86_64-apple-darwin13.4.0
Thread model: posix
InstalledDir: /Users/user/miniconda3/envs/quakemigrate/bin

You can proceed with the QuakeMigrate installation from source.

brew

If brew is not already installed (check with which brew), follow the instructions on the HomeBrew frontpage. This
will offer to install the Xcode Command Line Tools if they are not already present (press ‘ENTER’ or ‘Y’ to accept
this suggestion).

You can then proceed to install the OpenMP libraries with brew:

brew install libomp

You can safely ignore the warning about explicitly adding the relevant LDFLAGS etc. - this is already handled in the
QuakeMigrate setup.py script.

You can proceed with the QuakeMigrate installation from source.

Legacy: brew gcc

Alternatively, you can use the gcc compiler to install QuakeMigrate (and NonLinLoc). As with clang, we recommend
installing GCC through Homebrew. First, check if you already have gcc installed, with:

which gcc

If this doesn’t return anything, continue to installing gcc. If this returns the path to a gcc executable (e.g. /usr/bin/gcc),
then you should check the version, with:

gcc --version

16 Chapter 4. Contents:

https://brew.sh/

QuakeMigrate, Release 1.0.2

If the version string includes Apple clang, or is a version number lower than 9, you should proceed to install with
Homebrew:

brew install gcc
brew link gcc

Note that the brew link command should add gcc to your path, but might not succeed if a previous gcc install was
present. To test this, type:

which gcc
gcc --version

If the linking was successful, this should point to a new gcc executable, and the version string should contain gcc
(Homebrew GCC 9.4.0) 9.4.0 or similar. If not, you will need to manually link the new gcc executable. To do this,
find the path to your new gcc` installation with:

brew --prefix gcc

Then create a symlink to this executable:

ln -s /usr/local/bin/gcc /path/to/brew/gcc

Where /path/to/brew/gcc is the path returned by the brew --prefix command.

Finally, test this has worked by repeating the check from above:

which gcc
gcc --version

This should now return the Homebrew gcc version string. If not, please get in touch and we will try to help if we can. . .

Windows

Compilation and linking of the C extensions has been successful using the Microsoft Visual C++ (MSVC) build tools.

We strongly recommend that you download and install these tools in order to use QuakeMigrate. You can either install
Visual Studio in its entirety, or just the Build Tools - available here.

You will need to restart your computer once the installation process has completed. We recommend using the anaconda
command line interface (unix shell-like) to install QuakeMigrate over command prompt.

Warning: QuakeMigrate has been tested and validated on Windows, but there may yet remain some unknown
issues. If you encounter an issue (and/or resolve it), please submit a GitHub issue (or send an email) to let us know!

Once installed, you can proceed with the QuakeMigrate installation from source.

4.1. Installation 17

https://visualstudio.microsoft.com/downloads/

QuakeMigrate, Release 1.0.2

4.1.8 Notes

PROJ

There is a known issue with PROJ version 6.2.0 which causes vertical coordinates to be incorrectly transformed when
using units other than metres (the PROJ default). If you encounter this issue (you will get an ImportErrorwhen trying
to use the lut subpackage), you should update pyproj. Using conda will install an up-to-date PROJ backend, but you
may need to clear your cache of downloaded packages. This can be done using:

conda clean --all

Then reinstall pyproj:

conda uninstall pyproj
conda install pyproj

matplotlib backends

If you receive the warning about only the 'Agg' backend being available, you should first verify this manually. Open
a Python session, and type the following commands to attempt to open an interactive plotting window:

python
>>> import matplotlib.pyplot as plt
>>> plt.plot([1, 2], [1, 2])
>>> plt.show()

If an interactive plot window appears, then this was a false alarm, and you can proceed. Else, double-verify with:

>>> import matplotlib
>>> matplotlib.get_backend()

If this returns 'Agg', then you definitely need to install a backend capable of drawing interactive plots. You can do this
with conda (making sure your environment is activated):

conda intall pyqt

Then re-do the steps above to verify that this was successful.

4.2 Tutorials

Here we provide a few tutorials that explore each element of the package in more detail and provide code snippets the
user can use in their own research. (More coming soon - please get in touch if you would like to help out!)

18 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

4.2.1 Reading waveform archives

This tutorial will provide instructions on how to direct QuakeMigrate to a local waveform archive and how to specify
its structure. QuakeMigrate can handle any regularly structured waveform archive. Additional requirements can be
handled on request - contact us at quakemigrate.developers@gmail.com or submit an Issue on our GitHub.

The Archive class

The Archive class provides methods for querying a waveform archive on a local system. It is capable of handling any
regular archive structure, as well as any data file format that is compatible with ObsPy. Waveform data and an overview
of the data availability (see Rejection criteria) are returned by a query to the archive.

It requires two pieces of information on instantiation:

• archive_path: the path to seismic data archive

• stations: a DataFrame containing station information. There is one required (case-sensitive) column header -
“Name”.

All other parameters can either be provided as arguments on instantiation, or set once the Archive has been instantiated
(see the section on specifying the archive structure below for an example).

Here we create a new instance of Archive.

from quakemigrate.io import Archive, read_stations

--- Read in station file ---
stations = read_stations(station_file)

--- Create new Archive and set path structure ---
archive = Archive(archive_path=data_in, stations=stations)

Specifying the archive structure

Once the Archive object has been instantiated, we need to specify the regular archive structure. There are some stan-
dard formats, which can be accessed through the path_structure() method, including SeisComp3 and the standard
structure used by SeisUK. These map to a formattable string used when querying the waveform archive:

archive.path_structure(archive_format="SeisComp3")

It is also possible to override with a custom archive structure:

archive.format = "{year}/{jday:03d}/{station}_{year}_{jday:03d}_{channels}.*"

The full list of keyword arguments that are passed into this formattable string when the archive is queried is:

• year: UTCDateTime.year for the time period of the query

• month: UTCDateTime.month for the time period of the query

• day: UTCDateTime.day for the time period of the query

• jday: UTCDateTime.julday for the time period of the query

• station: the station name (replaced with "*" if reading all)

• dtime: UTCDateTime for the time period of the query

The inclusion of dtime allows for incredible flexibility, with most of the other arguments just providing shorthand.

4.2. Tutorials 19

mailto:quakemigrate.developers@gmail.com

QuakeMigrate, Release 1.0.2

Resampling waveforms

It is not uncommon for a data archive to contain stations with differing sampling rates. QuakeMigrate, however, per-
forms the core migration and stacking routine at a single, unified sampling rate. As such, we have bundled methods for
accomplishing this automatically, resampling the waveform data to the specified sampling rate as it is read in. These
routines aim to minimally alter the values of the waveforms by retaining as much of the original data as possible.
Downsampling from 100 Hz to 50 Hz, for example, is accomplished by decimating the waveforms by a factor of two -
skipping every other sample. If the unified sampling rate is not an integer divisor of the input waveform sampling rate,
there is (limited) scope to linearly interpolate the waveform data to a sampling rate that does divide into the unified
sampling rate an integer number of times, then decimate down.

Resampling can be toggled on with archive.resample = True, and a single factor by which to linearly interpolate
data when resampling with archive.upfactor = 2. We hope to de-restrict this in the future to allow for automatic
identification of a suitable upfactor (within reason).

Instrument response

While we do not need to remove the instrument response for the core migration and stacking routine - the de-
fault STA/LTA onset function implicitly handles this - if the user wishes to make use of the local magnitude
calculation module, they must provide an inventory of instrument response functions. The quakemigrate.io.
read_response_inv() function is a light wrapper for the ObsPy read_inventory() function. See their docu-
mentation for details of compatible formats.

In addition to the inventory of instrument response functions, the user can also set the water level, a pre-filter, and
choose to remove the full response.

Rejection criteria

We currently impose fairly strict criteria on the data to be used in QuakeMigrate, which are detailed below.

Gap tolerance

It is possible to allow QuakeMigrate to use gappy data. We do not recommend using this without first assessing the
waveform data and understanding the common causes of data gaps. This is currently set by toggling the allow_gaps
parameter of the quakemigrate.signal.onsets.STALTAOnset object to True.

This also applies to data missing at the start/end of a timestep.

Flatlines

Some archives will choose to fill any gaps in their waveform data with flatline values. If, for a given timestep, the data
all have the same value, they are rejected.

20 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Overlaps

If there is overlapping waveform data for a particular station component, it is not used.

4.2.2 Traveltime lookup tables

This tutorial will cover the basic ideas and definitions underpinning the traveltime lookup table, as well as showing
how they can be created.

In order to reduce computational costs during runtime, we pre-compute traveltime lookup tables (LUTs) for each seismic
phase and each station in the network to every node in a regularised 3-D grid. This grid spans the volume of interest,
herein termed the coalescence volume, within which QuakeMigrate will search for events.

Defining the underlying 3-D grid

Before we can create our traveltime lookup table, we first have to define the underlying 3-D grid which spans the volume
of interest.

Coordinate projections

First, we choose a pair of coordinate reference systems to represent the input coordinate space (cproj) and the Cartesian
grid space (gproj). We do this using pyproj, which provides the Python bindings for the PROJ library. It is important
to think about which projection is best suited to your particular study region. More information can be found in their
documentation.

Warning: The default units of Proj are metres! It is strongly advised that you explicitly state which units you
wish to use.

In this example we use the WGS84 reference ellipsoid (used as standard by the Global Positioning System) as our input
space and the Lambert Conformal Conic projection to define our Cartesian grid space:

from pyproj import Proj

cproj = Proj(proj="longlat", ellps="WGS84", datum"=WGS84", no_defs=True)
gproj = Proj(

proj="lcc",
lon_0=116.75,
lat_0=6.25,
lat_1=4.0,
lat_2=7.5,
datum="WGS84",
ellps="WGS84",
units="km",
no_defs=True

)

The units of the Cartesian grid space are specified as kilometres. lon_0 and lat_0 specify the geographic origin of
the projection (which should be at roughly the centre of your grid), and lat_1 and lat_2 specify the two “standard
parallels”, which set the region in which the distortion from unit scale is minimised. We therefore recommend you

4.2. Tutorials 21

https://pyproj4.github.io/pyproj/stable/
https://pyproj4.github.io/pyproj/stable/

QuakeMigrate, Release 1.0.2

choose latitudes at ~25% and 75% of the North-South extent of your grid (see Geographical location and spatial
extent).

Note: The values used in this LCC projection are for a study region in Sabah, Borneo. Caution is advised in choosing
an appropriate projection, particular if your study region is close to the poles. See the PROJ documentation for more
details, and the full selection of projections available.

Note: It is possible to run QuakeMigrate with distances measured in metres if desired, as long as the user specifies
this requirement when defining the grid projection and all other inputs (station elevations, grid specification, seismic
phase velocities, etc) are consistently specified in metres or metres/second.

Geographical location and spatial extent

In order to geographically situate our lookup table, we choose two reference points in the input coordinate space, herein
called the lower-left and upper-right corners (ll_corner and ur_corner, respectively). We work in a depth-positive
frame (i.e. positive-down or left-handed coordinate system); the following schematic shows the relative positioning of
the two corners:

The final piece of information required to define the grid on which we will compute traveltimes is the node_spacing
between grid nodes along each axis (x, y and z). The LUT class will automatically find the number of nodes required
to span the specified geographical region in each dimension. If the node spacing doesn’t fit into the corresponding grid
dimension an integer number of times, the location of the upper-right corner is shifted to accommodate an additional
node.

ll_corner = [116.075, 5.573, -1.750]
ur_corner = [117.426, 6.925, 27.750]
node_spacing = [0.5, 0.5, 0.5]

Note: Any reduction in grid size can greatly reduce the computational cost of running QuakeMigrate, as runtime scales
with the number of nodes - so n^3 for an equidimensional lookup table grid of side-length n. The 1-D fast-marching

22 Chapter 4. Contents:

https://proj.org/operations/projections/lcc.html

QuakeMigrate, Release 1.0.2

method for computing traveltimes requires that all stations be within the grid volume, but otherwise you are free to
design the grid as you wish.

Note: The corners (ll_corner and ur_corner) are nodes - hence a grid that is 20 x 20 x 20 km, with 2 km node
spacing in each dimension, will have 11 nodes in x, y, and z.

Bundling the grid specification

The grid specification needs to be bundled into a dictionary to be used as an input for the compute_traveltimes()
function. We use here the AttribDict from ObsPy, which extends the standard Python dict data structure to also
have .-style access.

grid_spec = AttribDict()
grid_spec.ll_corner = ll_corner
grid_spec.ur_corner = ur_corner
grid_spec.node_spacing = node_spacing
grid_spec.grid_proj = gproj
grid_spec.coord_proj = cproj

Computing traveltimes

Station files

In addition to the grid specification, we need to provide a list of stations for which to compute traveltime tables.

from quakemigrate.io import read_stations

stations = read_stations("/path/to/station_file")

The read_stations() function is a passthrough for pandas.read_csv(), so we can handle any delimiting char-
acters (e.g. by specifying read_stations("station_file", delimiter=",")). There are four required (case-
sensitive) column headers - Name, Longitude, Latitude, Elevation.

Note: Station elevations are in the positive-up/right-handed coordinate frame. An elevation of 2 would correspond to
2 (km) above sea level.

The compute_traveltimes() function used in the following sections returns a lookup table (a fully-populated in-
stance of the LUT class) which can be used for detect(), trigger(), and locate().

We have bundled a few methods of computing traveltimes into QuakeMigrate:

4.2. Tutorials 23

QuakeMigrate, Release 1.0.2

Homogeneous velocity model

Simply calculates the straight line traveltimes between stations and points in the grid. It is possible to use stations that
are outside the specified span of the grid if desired. For example, if you are searching for basal icequakes you may limit
the LUT grid to span a relatively small range of depths around the ice-bed interface.

from quakemigrate.lut import compute_traveltimes

compute_traveltimes(
grid_spec,
stations,
method="homogeneous",
vp=5.,
vs=3.,
log=True,
save_file=/path/to/save_file

)

1-D velocity models

Similarly to station files, 1-D velocity models are read in from an (arbitrarily delimited) textfile using quakemigrate.
io.read_vmodel() (see below for examples). There is only 1 required (case-sensitive) column header - Depth, which
contains the depths at the top of each layer in the velocity model. Each additional column should contain the seismic
velocity for each layer corresponding to a particular seismic phase, with a (case-sensitive) header, e.g. Vp (Note:
Uppercase V, lowercase phase code).

Note: The units for velocities should correspond to the units used in specifying the grid projection. km -> kms-1; m
-> ms-1.

Note: Depths are in the positive-down/left-handed coordinate frame. A depth of 5 would correspond to 5 (km) below
sea level.

1-D fast-marching method

The fast-marching method calculates traveltimes by implicitly tracking the evolution of the wavefront. We use the
scikit-fmm package as our backend to provide this functionality. It is possible to use this package to compute travel-
times from 1-D, 2-D, or 3-D velocity models, however currently we provide a utility function that computes traveltime
tables from 1-D velocity models. The format of this velocity model file is specified below. See the scikit-fmm docu-
mentation and Rawlinson & Sambridge (2005) for more details.

Note: Using this method, traveltime calculation can only be performed between grid nodes: the station location
is therefore taken as the closest grid node. For large node spacings this may cause a modest error in the calculated
traveltimes.

Note: All stations must be situated within the grid on which traveltimes are to be computed.

24 Chapter 4. Contents:

https://scikit-fmm.readthedocs.io/en/latest/
https://scikit-fmm.readthedocs.io/en/latest/
http://www.publish.csiro.au/eg/EG05341

QuakeMigrate, Release 1.0.2

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(

grid_spec,
stations,
method="1dfmm",
vmod=vmod,
log=True,
save_file=/path/to/save_file

)

The format of the required input velocity model file is specified above.

1-D NonLinLoc Grid2Time Eikonal solver

Uses the Grid2Time Eikonal solver from NonLinLoc under the hood to generate a 2D traveltime grid spanning the
distance between a station and the point in the lookup table grid furthest away from its location. This slice is then
“swept” through the necessary range of azimuths to populate the 3-D traveltime grid using a bilinear interpolation
scheme. This method has the benefit of being able to include stations outside of the volume of interest, allowing the
user to specify the minimum grid dimensions required to image the target region of seismicity.

Note: Requires the user to install the NonLinLoc software package (available from http://alomax.free.fr/nlloc/) – see
the Installation instructions for guidance.

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(

grid_spec,
stations,
method="1dsweep",
vmod=vmod,
block_model=True,
log=True,
save_file=/path/to/save_file

)

The format of the required input velocity model file is specified above.

4.2. Tutorials 25

http://alomax.free.fr/nlloc/

QuakeMigrate, Release 1.0.2

Other formats

It is also straightforward to import traveltime lookup tables generated by other means. We have provided a parser for
lookup tables stored in the NonLinLoc format (read_nlloc()). This code can be adapted to read any other traveltime
lookup table, so long as it is stored as an array: create an instance of the LUT class with the correct projections and grid
dimensions, then add the (C-ordered) traveltime arrays to the LUT.traveltimes dictionary using:

lut.traveltimes.setdefault(STATION, {}).update(
{PHASE.upper(): traveltime_table}

)

where STATION and PHASE are station name and seismic phase strings, respectively (e.g. ST01 and P).

Saving your LUT

If you provided a save_file argument to the compute_traveltimes() function, the LUT will already be saved.
We use the pickle library (a Python standard library) to serialise the LUT, which essentially freezes the state of the
LUT. If you did not provide a save_file argument, or have added 3rd-party traveltime lookup tables to the LUT, you
will need to save it using:

lut.save("/path/to/output/lut")

In any case, the lookup table object is returned by the compute_traveltimes() function allowing you to explore the
object further if you wish.

Reading in a saved LUT

When running the main stages of QuakeMigrate (detect(), trigger(), and locate()) it is necessary to read in the
saved LUT, which can be done as:

from quakemigrate.io import read_lut
lut = read_lut(lut_file="/path/to/lut_file")

Decimating a LUT

You may wish to experiment with different node spacings, to find the optimal balance between computational require-
ments (runtime and memory usage), resolution, and detection sensitivity. The LUT object has decimation functionality
built-in, e.g.:

lut = lut.decimate([2, 2, 2])

will decimate (increase the node spacing) by a factor of 2 in each of the x, y and z dimensions.

Note: The lut.decimate() function is (by default) not carried out in-place, so you need to explicitly set the variable
lut equal to the returned copy. Alternatively, use inplace=True.

Note: Where the decimation factor d is not a multiple of n-1, where n is the number of grid nodes along the given
axis, one or more grid nodes will be removed from the upper-right-corner direction of the LUT, which will accordingly
slightly reduce the grid extent.

26 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

4.2.3 Detect

This tutorial will cover the basic ideas and definitions underpinning the initial stage of a QuakeMigrate run - Detect.

During this stage, the waveform data is continuously migrated through your travel time lookup tables (LUTs) to generate
a coalescence function through time. This function records the x, y, z position of maximum coalescence in your volume
for each timestep. Peaks in this function are then used during the trigger stage to identify events.

The migration of the data is performed for each node and timestep in a 4D sense and can be very computationally
demanding. For this reason, it is typical to decimate the LUT to reduce the computation time. Multi-core machines or
HPC clusters can also be used to split the time period and perform the computation in parallel.

Before you start

You will need an archive of waveform files organised into a regular structure (see the Archive tutorial), a traveltime
LUT (as generated in the previous tutorial) and a station file (as used to generate the LUT). You will also need to choose
a location to store your results and a name for your run. QuakeMigrate will automatically generate an output structure
to store all your results and place this in a folder (named by the run name) in your chosen location. You may well
run QuakeMigrate many times before you reach the final set of parameter values which produce the best results. It is
therefore recommended you devise a naming scheme to help you distinguish between your trials. Information on the
parameters for each run can be found at the head of the corresponding log file.

Note: The output directory and run names are used to link the outputs from one stage to the next. As such, you must
be consistent across detect, trigger, and locate for a full run.

We proceed by defining these parameters as variables.

from quakemigrate.io import read_stations

archive_path = "/path/to/archived/data"
lut_file = "/path/to/lut_file"
station_file = "/path/to/station_file"

run_path = "/path/to/output"
run_name = "name_of_run"

stations = read_stations(station_file)

Detect runs on continuous data between two defined timestamps. Internally, QuakeMigrate uses UTCDateTime
(from ObsPy) to parse the timestamps, so your start- and endtime strings can be in any form compatible with this
UTCDateTime, such as:

starttime = "2018-001T00:00:00.0"
endtime = "2018-002T00:00:00.0"

The waveform archive is defined using an Archive object (see Archive tutorial) and the saved LUT can be loaded
using the quakemigrate.io.read_lut() function.

from quakemigrate.io import Archive, read_lut

archive = Archive(archive_path=archive_path, stations=stations,
(continues on next page)

4.2. Tutorials 27

https://quakemigrate.readthedocs.io/en/docs-tutorials/tutorials/archive.html
https://docs.obspy.org/packages/autogen/obspy.core.utcdatetime.UTCDateTime.html
https://quakemigrate.readthedocs.io/en/docs-tutorials/tutorials/archive.html

QuakeMigrate, Release 1.0.2

(continued from previous page)

archive_format="YEAR/JD/STATION")
lut = read_lut(lut_file=lut_out)

Decimation of the LUT

To reduce computation time the decimation functionality of the LUT can be used. This reduces the number of nodes
at which the coalescence is calculated resulting in a spatially low-pass filtered coalescence function. This is reason-
able when we use the data for earthquake detection, but should be carefully considered if the locations output from a
decimated grid are to be relied upon.

Typically, the final node spacing of your decimated grid should be similar to the expected uncertainty on your earthquake
location. For the example below, the raw LUT has a node spacing of 0.5 km. After decimation, the node spacing is 2.5
km in the horizontal directions and 2 km in the vertical direction. These are good starting values for a local seismic
network with an aperture of 20 - 80 km.

lut = lut.decimate([5, 5, 4])

Using an Onset Function

Waveform data is initially pre-processed in a standard fashion - the data is linearly detrended, demeaned, and a cosine
taper is applied before a zero phase-shift Butterworth bandpass filter - before being transformed into an onset function.

The onset function should (if correctly specified) peak at the arrival time of a seismic phase, representing the likelihood
and quality of a phase arrival being recorded at any given instant. This function acts to simplify the seismic wavefield
recorded by your instruments so the migration and stacking process work more reliably with noisy data or inaccurate
velocity models. The correct choice of bandpass filters maximises the signal-to-noise ratio of your desired arrivals
thereby maximising the coalescence value of any migrated earthquake.

Deciding your Onset Function

QuakeMigrate currently ships with one option to use as an onset function (STALTAOnset)). Custom functions are
easily added to QuakeMigrate and are discussed in a further tutorial.

from quakemigrate.signal.onset import STALTAOnset

onset = STALTAOnset(position="classic")

The STALTA function is the ratio between the average value in a short window to the average value in a longer window.
In theory, if your window lengths are well-chosen, this function should peak at the arrival time of a seismic phase.
The STALTAOnset function that ships with QuakeMigrate takes a keyword argument (position) which specifies the
window position relative to the reference point (see image below).

28 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

When the classic configuration is chosen, QuakeMigrate will use the classic_sta_lta() from ObsPy where both
windows are behind the current timestamp. This is the more usual formulation as it is causal (i.e. doesn’t rely on future
data to generate the value at a particular time). In contrast, the centred argument will place the short window ahead
of the current timestamp, as to maximise the signal-to-noise ratio.

Experience has suggested that during the detect stage the classic option produces more robust results because it is
more stable in the presence of non-seismic noise (e.g. signal offsets due to recording issues). During the locate stage
it is often better to use the centred argument as the resulting peaks in the coalescence function will be higher, less
broad, and more consistent with the underlying theory.

Defining a good filter

Prior inspection of your recorded data before analysis is strongly recommended to help choose the optimal filter band.
Users can use tools such as Probabilistic Power Spectral Densities to characterise the noise across the network. If some
event origin times are known then spectrograms or amplitude spectra can be calculated to analyse the typical frequency
content of the noise and signal.

[lowcut (Hz), highcut (Hz), corners]
onset.bandpass_filter = {

"P": [2, 9.9, 2]
"S": [2, 9.9, 2]

}

High- and low-cut frequencies can be defined for both P- and S-waves separately and are defined in Hertz. Typically
S-waves have lower frequency content than P-waves and the horizontal components may have a different seismic-noise
frequency content to the vertical component.

For volcano-tectonic or microseismicity recorded across a local network, good starting values are 2 Hz for the low-cut
corner and 10 - 16 Hz for the high-cut corner. These values remove most of the seismic noise associated with the
oceanic microseism (periods > 7 s) and reduce high-frequency anthropogenic seismic noise.

Note: QuakeMigrate uses a Butterworth filter with customisable high- and low-corners. The filter is applied both
forwards and backwards to remove any phase shifts. As such, the effective order is double the user-defined order.

Note: Remember to check the Nyquist frequency of your data. An exception will be thrown if you try to filter at
frequencies greater than the Nyquist.

4.2. Tutorials 29

https://docs.obspy.org/packages/autogen/obspy.signal.trigger.classic_sta_lta.html
https://docs.obspy.org/tutorial/code_snippets/probabilistic_power_spectral_density.html
https://docs.obspy.org/packages/autogen/obspy.imaging.spectrogram.spectrogram.html#obspy.imaging.spectrogram.spectrogram
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html

QuakeMigrate, Release 1.0.2

Window lengths

In combination with your filter choice, the choice of window length is the most important parameter in producing high-
quality results. As when specifying the filter parameters, you can choose to specify different window parameters for P-
and S-phases to account for differences in their frequency content and/or noise value.

[length of short window (s), length of long window (s)]
onset.sta_lta_windows = {

"P": [0.2, 1.5],
"S": [0.2, 1.5]

}

A good place to start is to choose a short window length equal to 2-3 times the dominant period of the signal you are
hoping to capture. The long window values are then much longer than the short window. Typical values are 5-10 times
the length of the short window.

When choosing your parameters, you should experiment with different values using your data before running a detect
run. A good way to do this is to use a combination of the Archive and STALTAOnset classes to grab sections of data
from your archive and apply different filter and STALTA parameters to it. The data can be manipulated and displayed
using matplotlib as in the example below.

import matplotlib.pyplot as plt
from obspy import UTCDateTime

from quakemigrate.signal.onsets import STALTAOnset
from quakemigrate.io import Archive, read_stations

define an archive object
archive_path = "/path/to/archived/data"
station_file = "/path/to/station_file"
stations = read_stations(station_file)
archive = Archive(

archive_path=archive_path,
stations=stations,
archive_format="YEAR/JD/STATION"

)

Read a snippet of data (ideally around a known event)
starttime = UTCDateTime("2018-001T10:00:00.0")
endtime = UTCDateTime("2018-001T10:05:00.0")
data = archive.read_waveform_data(starttime, endtime, sampling_rate)

Define the onset function
onset = STALTAOnset(sampling_rate=sampling_rate, position="classic")
onset.bandpass_filter = {

"P": [2, 9.9, 2]
"S": [2, 9.9, 2]

}
onset.sta_lta_windows = {

"P": [0.2, 1.5],
"S": [0.2, 1.5]

}

(continues on next page)

30 Chapter 4. Contents:

https://matplotlib.org/

QuakeMigrate, Release 1.0.2

(continued from previous page)

Apply the onset function to the data snippet
onset_data = onset.calculate_onsets(data)

Onset data is a numpy array of the P and S onsets
to plot the Z-component of the first station
fig, axs = plt.subplots(nrows=3, ncols=1, constrained_layout=True)

raw_waveform = data.signal[0, 0, :]
filtered_waveform = data.filtered_signal[0, 0, :]
onset_waveform = onset_data[0, :]
time = data.times()

axs[0].plot(time, raw_waveform, 'k-')
axs[0].set_xlabel('Time [s]')
axs[0].set_title('Raw data')

axs[1].plot(time, filtered_waveform, 'k-')
axs[1].set_xlabel('Time [s]')
axs[1].set_title('Filtered data')

axs[2].plot(time, onset_data, 'k-')
axs[2].set_xlabel('Time [s]')
axs[2].set_ylabel('signal-to-noise ratio')
axs[2].set_title('Onset function')

plt.show()

Detect parameters

The detect stage of QuakeMigrate takes relatively few parameters which the user should set before starting the run.
These mostly affect the runtime of the detect run and optimising them can dramatically reduce the overall compute
time.

from quakemigrate import QuakeScan

scan = QuakeScan(
archive,
lut,
onset=onset,
run_path=run_path,
run_name=run_name,
log=True,
loglevel="info"

)
scan.sampling_rate = 20
scan.timestep = 120.
scan.threads = 12

The sampling_rate should be chosen to be the minimum possible given your chosen filter/signal frequency content
as a coalescence grid is calculated for each sample. In this case filtering between 2 - 10 Hz was best so one can decimate
100 Hz data to 20 Hz.

4.2. Tutorials 31

QuakeMigrate, Release 1.0.2

The timestep parameter is used to balance between reducing the number of times data is requested from the Archive
object and the memory capacity of your machine. As reading data from the hard drive is slow, and limited to one
processor, the number of times this is requested should be minimised. However, reading large chunks of waveform data
can quickly fill your computer’s RAM, dramatically slowing the calculation.

Finally, the threads parameter controls the number of CPU threads you wish to make available for detect to use
when migrating and stacking the waveform data. If you wish to use your computer for other work while running
QuakeMigrate, you may find it useful to leave some of your cores free.

Starting your Detect run

scan.detect(starttime, endtime)

Detect is called using this command and the waveform archive is scanned between the start and end time in chunks of
length timestep. A log will be printed to STDOUT which summarises the chosen parameters for your run. As the
calculation proceeds the chunk of time currently being analysed will be printed to the screen with the amount of time
taken to perform the calculation for that chunk.

Common Errors

The errors output from QuakeMigrate should be self-explanatory. See below for some of the specific errors associated
with the detect stage.

ArchiveEmptyException

This common error is output if your Archive object doesn’t return any data for the time period requested. Check your
data archive and time period requested.

Understanding the output from detect

Detect creates 3 output directories containing station availability data, logs and the primary output used for the subse-
quent trigger stage, the scanmseed object.

Station availability

This is a .csv file created for each day requested and placed in the output directory in a folder named detect/availability.
It is a simple csv file recording whether a station has data available and no gaps during each timestep. This can be used
to quickly assess the configuration of your seismic network.

,STATION1_P,STATION2_P,STATION3_P,STATION1_S,STATION2_S,STATION3_S
2014-06-29T18:41:55.000000Z,1,1,1,1,1,1
2014-06-29T18:41:55.750000Z,1,1,1,1,0,1
2014-06-29T18:41:56.500000Z,1,1,0,1,1,1

32 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Logfile

The files in this directory store the screen output from each detect run. These are written to file by default, but if you
don’t want/need this output you can set log=False when initialising the QuakeScan object.

Scanmseed object

The ScanmSEED object is the primary output from the detect stage and is used as the input for the trigger stage. It is a
miniSEED object containing 5 traces with data at the same sample rate as requested for the input:

1. The maximum coalescence value of the grid.

2. The maximum coalescence value of the grid normalised by the mean value of the entire grid

3. The X, Y and Z position of maximum coalescence

By using the miniSEED file format it is possible to read the outputs using the same methods as for waveform data. For
example, you can easily read and plot the coalescence function using:

from obspy import read

st = read('path/to/file.scanmseed')
print(st)

> Should display the following
5 Trace(s) in Stream:
NW.COA.. | 2014-06-29T18:41:55.000000Z - 2014-06-29T18:42:20.498000Z | 500.0 Hz,␣
→˓12750 samples
NW.COA_N.. | 2014-06-29T18:41:55.000000Z - 2014-06-29T18:42:20.498000Z | 500.0 Hz,␣
→˓12750 samples
NW.X.. | 2014-06-29T18:41:55.000000Z - 2014-06-29T18:42:20.498000Z | 500.0 Hz,␣
→˓12750 samples
NW.Y.. | 2014-06-29T18:41:55.000000Z - 2014-06-29T18:42:20.498000Z | 500.0 Hz,␣
→˓12750 samples
NW.Z.. | 2014-06-29T18:41:55.000000Z - 2014-06-29T18:42:20.498000Z | 500.0 Hz,␣
→˓12750 samples

st[0].plot()

Storing the data as miniSEED files not only makes it easy to plot and manipulate the data using ObsPy, but also
enables us to use miniSEEDs impressive compression routines (STEIM1/2) to efficiently store large volumes of data.
To facilitate this, we store values in the scanmseed file as integers, retaining the original float point values to some fixed
precision. These are: 5 for the two coalescence traces, 6 for X and Y. The depth (Z) is stored to the nearest millimetre,
the exact number depending on your choice of units for the LUT. To return the values stored in the scanmseed object
to the real values, divide each trace by the appropriate factor.

4.2. Tutorials 33

QuakeMigrate, Release 1.0.2

4.2.4 The trigger stage

After completing a sweep through your waveform data using detect, in which a scanmseed object is created, we now
proceed to the next stage, ‘trigger`.

In this stage, a triggering algorithm is used on the output from detect to identify potential events. These potential origin
times are then passed to locate for relocation, output and further analysis.

Before you start

Trigger uses only the output from a previous detect run and the accompanying lookup table (LUT). These are specified
as below.

from quakemigrate.io import read_lut

lut_file = "./outputs/lut/example.LUT"
run_path = "./outputs/runs"
run_name = "example_run"

--- Set time period over which to run trigger ---
starttime = "2014-06-29T18:41:55.0"
endtime = "2014-06-29T18:42:20.0"

--- Load the LUT ---
lut = read_lut(lut_file=lut_file)

Note: Your run_path and run_name variables should be identical to those used in the detect run. QuakeMigrate
will automatically generate suitable output directories for the output from trigger.

The starttime and endtime variables do not have to be the same as the detect run. You can experiment with your
trigger parameters on smaller time periods (which may or may not contain earthquakes) before running the entire time
period.

Initialising the Trigger object

from quakemigrate.signal import Trigger
trig = Trigger(lut, run_path=run_path, run_name=run_name, log=True,

loglevel="info")

trig.marginal_window = 1.
trig.min_event_interval = 6.
trig.normalise_coalescence = True

The :class:Trigger object is initialised above with the LUT and run-naming variables. Three parameters should be
set to optimise results.

The normalise_coalesence argument defines whether you wish to use the coalescence or the normalised coalescence
traces to perform the triggering. While there is typically little difference between the two traces, experience has found
that using the normalised coalescence is normally the better choice. This is because the STALTAOnset function reaches
a minimum directly after high signal-to-noise ratio events. This can act to mask small aftershocks that can occur either
within or directly after the coda of the large event. By normalising the coalescence by the average 3D-grid coalescence,
this effect is reduced.

34 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

The marginal_window and min_event_interval parameters control the minimum time interval (in seconds) al-
lowed between successive triggered earthquakes. The algorithm proceeds by first identifying all time periods where
the coalescence is greater than the threshold (see below for how to select this). The candidate event origin time is then
defined as the position of maximum coalescence in each candidate period. These candidate origin times are then fil-
tered such that the marginal_window around a candidate origin time is not within the min_event_inteval of another
event. If this does occur, the larger of the two candidates is preserved for the next stage. This is displayed schematically
in the figure below. The marginal_window around the second triggered event overlaps with the min_event_window
around the third triggered event. As the second peak is lower than the third, the second triggered event is removed.

These two parameters can have large consequences in the results output from trigger. You can experiment
with the effect they have on your final results by running small-time periods of data through detect and setting
interactive_plot=True (see below). After running, trigger will open a matplotlib figure showing the size of the
marginal_window and min_event_inteval around each triggered event, allowing you to fine-tune your chosen
values.

A good rule-of-thumb is that the length of the marginal_window should be an estimate of the error in origin time due
to the expected spatial error of your seismicity and error in the velocity model. For example, an earthquake with an
expected spatial error of 2.5 km, a reasonable error in the velocity model of 0.2 km s-1 and a network station spacing
of 20 km would have a total error of ~1 s. The min_event_interval parameter depends on the seismicity which you
are trying to image. For many tectonic settings, 30 s would be reasonable. However, during a dyke intrusion or other
seismic crisis you may want to reduce this number as events can occur very frequently.

Choosing a detection threshold

The detection threshold is the most important parameter for determining the number of triggers that are passed to the
locate stage. Choosing a “good” value will mean a low number of false positives while maximising the number of
detected earthquakes. QuakeMigrate has two options for deciding how to calculate the threshold: a static or dynamic
threshold. These are discussed below. To decide which values and method to use, you should experiment with your
own data using the interactive_plot=True keyword argument (see below).

For many situations, a static threshold is sufficient as the background noise is fairly constant. If however, your seismic
network suffers from large changes in the noise levels with time (i.e. due to anthropogenic noise) or you wish to
automatically raise the detection threshold during seismic swarms you may wish to experiment with using the dynamic
options.

4.2. Tutorials 35

QuakeMigrate, Release 1.0.2

Static Threshold

--- Static threshold ---
trig.threshold_method = "static"
trig.static_threshold = 1.8

Does exactly as it says on the tin. You decide a number and events are triggered if the coalescence value exceeds this
number.

Dynamic Threshold

--- Dynamic (Median Absolute Deviation) threshold ---
trig.threshold_method = "dynamic"
trig.mad_window_length = 7200.
trig.mad_multiplier = 8.

In this method, the threshold value is chosen based on the median absolute deviation (MAD) of the coalescence func-
tion. The mad_window_length parameter controls the window (in seconds) which the MAD is calculated over. The
mad_multiplier parameter is the multiplier applied to the MAD value which sets the threshold for that time window.

The calculation of the MAD can be time-consuming if the window length is small. Typically, you should not need to
reduce the window below 1 hour (i.e. 3600 s) to accurately capture the change in seismic noise levels, but ultimately it
depends on the timescale over which you expect to see changes in noise.

Running Trigger

trig.trigger(starttime, endtime, interactive_plot=False)

Trigger runs for a time period between the defined start and end times. A single keyword argument
(interactive_plot) can be used to open an interactive figure as well as saving the trigger summaries to file. For full
trigger runs, it is recommended this is turned off.

Understanding the trigger output

Trigger makes two outputs along with the optional logfiles: a list of event triggers in a .csv file and a summary figure.

Event trigger file

This is a simple .csv file which contains the events triggered during this run of trigger. In the .csv file the unique event
id (based on the origin time), the location, and the coalescence values on both the normalised and raw coalescence
traces are saved. This file is used as an input for the locate stage.

36 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Trigger summary figure

This figure contains a number of panels which summarises the results of the trigger stage. It is useful to check these
figures when checking that your trigger parameters are reasonable.

On the left of the figure is a map view and 2 cross-sections showing the location of the triggered events (circles) in
relation to your seismic network (triangles). The events are coloured by their peak coalescence value by the displayed
colourmap. The bottom panel on the right-hand side shows the number of stations available during your chosen time
window. Above this are two panels showing the normalised (middle) and non-normalised (top) coalescence functions.
Your chosen detection threshold will be shown as a green line on whichever coalescence function you performed the
triggering on (in this example, the normalised trace). Triggered events will be indicated by vertical lines with their
accompanying marginal window and minimum event interval.

4.3 Source code

Explore the documentation and source code for the QuakeMigrate package.

4.3.1 quakemigrate.core

The quakemigrate.core module provides Python bindings for the library of compiled C routines that form the core
of QuakeMigrate:

• Migrate onsets - This routine performs the continuous migration through time and space of the onset functions.
It has been parallelised with openMP.

• Find maximum coalescence - This routine finds the continuous maximum coalescence amplitude in the 4-D
coalesence volume.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

4.3. Source code 37

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Functions

Bindings for the C library functions, migrate and find_max_coa.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.core.lib.find_max_coa(map4d, threads)
Finds time series of the maximum coalescence/normalised coalescence in the 3-D volume, and the corresponding
grid indices.

Parameters
• map4d (numpy.ndarray of numpy.double) – 4-D coalescence map, shape(nx, ny, nz, nsam-

ples).

• threads (int) – Number of threads with which to perform the scan.

Returns
• max_coa (numpy.ndarray of numpy.double) – Time series of the maximum coalescence

value in the 3-D volume.

• max_norm_coa (numpy.ndarray of numpy.double) – Times series of the maximum nor-
malised coalescence value in the 3-D volume.

• max_coa_idx (numpy.ndarray of int) – Time series of the flattened grid indices correspond-
ing to the maximum coalescence value in the 3-D volume.

quakemigrate.core.lib.migrate(onsets, traveltimes, first_idx, last_idx, available, threads)
Computes 4-D coalescence map by migrating seismic phase onset functions.

Parameters
• onsets (numpy.ndarry of float) – Onset functions for each seismic phase, shape(nonsets,

nsamples).

• traveltimes (numpy.ndarry of int) – Grids of seismic phase traveltimes, converted to an
integer multiple of the sampling rate, shape(nx, ny, nz, nonsets).

• first_idx (int) – Index of first sample in array from which to scan.

• last_idx (int) – Index of last sample in array up to which to scan.

• available (int) – Number of available onset functions.

• threads (int) – Number of threads with which to perform the scan.

Returns
map4d – 4-D coalescence map, shape(nx, ny, nz, nsamples).

Return type
numpy.ndarray of numpy.double

Raises
• ValueError – If mismatch between number of onset functions and traveltime lookup tables.

Expect both to be equal to the no. stations * no. phases.

• ValueError – If the number of samples in the onset functions is less than the number of
samples array is smaller than map4d[0, 0, 0, :].

38 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

4.3.2 quakemigrate.export

The quakemigrate.export module provides some utility functions to export the outputs of QuakeMigrate to other
catalogue formats/software inputs:

• Input files for NonLinLoc

• ObsPy Catalog object

• Snuffler pick/event files for manual phase picking

• MFAST for shear-wave splitting analysis

Warning: Export modules are an ongoing work in progress. The functionality of the core module to_obspy has
been validated, but there may still be bugs elsewhere. If you are interested in using these, or wish to add additional
functionality, please contact the QuakeMigrate developers at: quakemigrate.developers@gmail.com .

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_mfast

This module provides parsers to generate SAC waveform files from an ObsPy Catalog, with headers correctly populated
for MFAST.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_mfast.sac_mfast(event, stations, output_path, units, filename=None)
Function to create the SAC file.

Parameters
• event (ObsPy.Event object) – Contains information about the origin time and a list of asso-

ciated picks.

• stations (pandas.DataFrame object) – DataFrame containing station information.

• output_path (str) – Location to save the SAC file.

• units ({"km", "m"}) – Grid projection coordinates for QM LUT (determines units of
depths and uncertainties in the .event files).

• filename (str, optional) – Name of SAC file - defaults to “even-
tid/eventid.station.{comp}”.

4.3. Source code 39

mailto:quakemigrate.developers@gmail.com
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.export.to_nlloc

This module provides parsers to export an ObsPy Catalog to the NonLinLoc input file format. We prefer this to the one
offered by ObsPy as it includes the additional weighting term.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_nlloc.nlloc_obs(event, filename, autopick=True)
Write a NonLinLoc Phase file from an obspy Event object.

Parameters
• event (obspy.Event object) – Contains information on a single event.

• filename (str) – Name of NonLinLoc phase file.

• autopick (bool, optional) – Whether to read the autopicks or the modelled arrival
times. Default: True (use autopicks).

quakemigrate.export.to_obspy

This module provides parsers to export the output of a QuakeMigrate run to an ObsPy Catalog.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_obspy.read_quakemigrate(run_dir, units, run_subname='', local_mag_ph='S')
Reads the .event and .picks outputs, and .amps outputs if available, from a QuakeMigrate run into an obspy
Catalog object.

NOTE: if a station_corrections dict was used to calculate the network-averaged local magnitude, this information
will not be included in the ObsPy event object. There might therefore be a discrepancy between the mean of the
StationMagnitudes and the event magnitude.

Parameters
• run_dir (str) – Path to QuakeMigrate run directory.

• units ({"km", "m"}) – Grid projection coordinates for QM LUT (determines units of
depths and uncertainties in the .event files).

• run_subname (str, optional) – Run_subname string (if applicable).

• local_mag_ph ({"S", "P"}, optional) – Amplitude measurement used to calculate lo-
cal magnitudes. (Default “S”).

Returns
cat – Catalog containing events in the specified QuakeMigrate run directory.

Return type
obspy.Catalog object

40 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.export.to_snuffler

This module provides parsers to generate input files for Snuffler, a manual phase picking interface from the Pyrocko
package.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_snuffler.snuffler_markers(event, output_path, filename=None)
Function to create marker files compatible with snuffler

Parameters
• event (ObsPy.Event object) – Contains information about the origin time and a list of asso-

ciated picks.

• output_path (str) – Location to save the marker file.

• filename (str, optional) – Name of marker file - defaults to ‘eventid/eventid.markers’.

quakemigrate.export.to_snuffler.snuffler_stations(stations, output_path, filename,
network_code=None)

Function to create station files compatible with snuffler.

Parameters
• stations (pandas.DataFrame object) – DataFrame containing station information.

• output_path (str) – Location to save snuffler station file.

• filename (str) – Name of output station file.

• network_code (str) – Unique identifier for the seismic network.

4.3.3 quakemigrate.io

The quakemigrate.io module handles the various input/output operations performed by QuakeMigrate. This in-
cludes:

• Reading waveform data - The submodule data.py can handle any waveform data archive with a regular directory
structure. It also provides functions for checking data quality and removing/simulating instrument reponse.

• Reading station files, velocity model files, instrument response inventories and QuakeMigrate lookup tables.

• The Run class encapsulates all i/o path information and logger configuration for a given QuakeMigrate run.

• The Event class encapsulates waveforms, coalescence information, picks and location information for a given
event, and provides functionality to write “.event” files.

• Reading and writing results, including station availablity data and continuous coalescence output from detect;
triggered event files from trigger, amplitude and local magnitude measurements and cut waveforms for located
events.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

4.3. Source code 41

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.io.amplitudes

Module to handle input/output of .amps files.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.amplitudes.write_amplitudes(run, amplitudes, event)
Write amplitude results to a new .amps file. This includes amplitude measurements, and the magnitude estimates
derived from them (with station correction terms applied, if provided).

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measurements for each
component of each station in the station file, and individual local magnitude estimates derived
from them. Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”, “P_time”,

”P_avg_amp”, “P_filter_gain”, “S_amp”, “S_freq”, “S_time”, “S_avg_amp”,
“S_filter_gain”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”]

Index = Trace ID (see obspy.Trace object property ‘id’)

• event (Event object) – Light class encapsulating waveforms, coalescence information,
picks and location information for a given event.

quakemigrate.io.availability

Module to handle input/output of StationAvailability.csv files.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.availability.read_availability(run, starttime, endtime)
Read in station availability data to a pandas.DataFrame from csv files split by Julian day.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object) – Timestamp from which to read the station avail-
ability.

• endtime (obspy.UTCDateTime object) – Timestamp up to which to read the station avail-
ability.

Returns
availability – Details the availability of each station for each timestep of detect.

Return type
pandas.DataFrame object

42 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.io.availability.write_availability(run, availability)
Write out csv files (split by Julian day) containing station availability data.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• availability (pandas.DataFrame object) – Details the availability of each station for each
timestep of detect.

quakemigrate.io.core

Module to handle input/output for QuakeMigrate.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.core.Run(path, name, subname='', stage=None, loglevel='info')
Bases: object

Light class to encapsulate i/o path information for a given run.

Parameters
• stage (str) – Specifies run stage of QuakeMigrate (“detect”, “trigger”, or “locate”).

• path (str) – Points to the top level directory containing all input files, under which the
specific run directory will be created.

• name (str) – Name of the current QuakeMigrate run.

• subname (str, optional) – Optional name of a sub-run - useful when testing different
trigger parameters, for example.

path

Points to the top level directory containing all input files, under which the specific run directory will be
created.

Type
pathlib.Path object

name

Name of the current QuakeMigrate run.

Type
str

run_path

Points to the run directory into which files will be written.

Type
pathlib.Path object

subname

Optional name of a sub-run - useful when testing different trigger parameters, for example.

Type
str

4.3. Source code 43

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

stage

Track which stage of QuakeMigrate is being run.

Type
{“detect”, “trigger”, “locate”}, optional

loglevel

Set the logging level. (Default “info”)

Type
{“info”, “debug”}, optional

logger(log)
Spins up a logger configured to output to stdout or stdout + log file.

logger(log)
Configures the logging feature.

Parameters
log (bool) – Toggle for logging. If True, will output to stdout and generate a log file.

property name

Get the run name as a formatted string.

quakemigrate.io.core.read_lut(lut_file)
Read the contents of a pickle file and restore state of the lookup table object.

Parameters
lut_file (str) – Path to pickle file to load.

Returns
lut – Lookup table populated with grid specification and traveltimes.

Return type
LUT object

quakemigrate.io.core.read_response_inv(response_file, sac_pz_format=False)
Reads response information from file, returning it as a obspy.Inventory object.

Parameters
• response_file (str) – Path to response file. Please see the obspy.read_inventory() doc-

umentation for a full list of supported file formats. This includes a dataless.seed volume, a
concatenated series of RESP files or a stationXML file.

• sac_pz_format (bool, optional) – Toggle to indicate that response information is being
provided in SAC Pole-Zero files. NOTE: not yet supported.

Returns
response_inv – ObsPy response inventory.

Return type
obspy.Inventory object

Raises
• NotImplementedError – If the user selects sac_pz_format=True.

• TypeError – If the user provides a response file that is not readable by ObsPy.

44 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

quakemigrate.io.core.read_stations(station_file, **kwargs)
Reads station information from file.

Parameters
• station_file (str) – Path to station file. File format (header line is REQUIRED, case

sensitive, any order):

Latitude, Longitude, Elevation (units matching LUT grid projection; either metres or
kilometres; positive upwards), Name

• kwargs (dict) – Passthrough for pandas.read_csv kwargs.

Returns
stn_data – Columns: “Latitude”, “Longitude”, “Elevation”, “Name”

Return type
pandas.DataFrame object

Raises
StationFileHeaderException – Raised if the input file is missing required entries in the
header.

quakemigrate.io.core.read_vmodel(vmodel_file, **kwargs)
Reads velocity model information from file.

Parameters
• vmodel_file (str) – Path to velocity model file. File format: (header line is REQUIRED,

case sensitive, any order):

”Depth” of each layer in the model (units matching the LUT grid projection; positive-
down) “V<phase>” velocity for each layer in the model, for each phase the user wishes
to calculate traveltimes for (units matching the LUT grid projection). There are no
required phases, and no maximum number of separate phases. E.g. “Vp”, “Vs”, “Vsh”.

• kwargs (dict) – Passthrough for pandas.read_csv kwargs.

Returns
vmodel_data –

Columns:
”Depth” of each layer in model (positive down) “V<phase>” velocity for each layer in model
(e.g. “Vp”)

Return type
pandas.DataFrame object

Raises
VelocityModelFileHeaderException – Raised if the input file is missing required entries in
the header.

quakemigrate.io.core.stations(station_file, **kwargs)
Alias for read_stations.

4.3. Source code 45

QuakeMigrate, Release 1.0.2

quakemigrate.io.cut_waveforms

Module to handle input/output of cut waveforms.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.cut_waveforms.get_waveforms(st, event, waveform_type, units)
Get real or simulated waveforms for a Stream.

Parameters
• st (obspy.Stream object) – Stream for which to get real or simulated waveforms.

• event (Event object) – Light class encapsulating waveforms, coalescence information,
picks and location information for a given event.

• waveform_type ({"real", "wa"}) – Whether to get real or Wood-Anderson simulated
waveforms.

• units ({"displacement", "velocity"}) – Units to return waveforms in.

Returns
st_out – Stream of real or Wood-Anderson simulated waveforms in the requested units.

Return type
obspy.Stream object

quakemigrate.io.cut_waveforms.write_cut_waveforms(run, event, file_format, pre_cut=0.0, post_cut=0.0,
waveform_type='raw', units='displacement')

Output cut waveform data as a waveform file – defaults to miniSEED format.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• event (Event object) – Light class encapsulating waveforms, coalescence information,
picks and location information for a given event.

• file_format (str, optional) – File format to write waveform data to. Options are all
file formats supported by ObsPy, including: “MSEED” (default), “SAC”, “SEGY”, “GSE2”

• pre_cut (float or None, optional) – Specify how long before the event origin time
to cut the waveform data from.

• post_cut (float or None, optional) – Specify how long after the event origin time
to cut the waveform data to.

• waveform_type ({"raw", "real", "wa"}, optional) – Whether to output raw, real
or Wood-Anderson simulated waveforms. Default: “raw”

• units ({"displacement", "velocity"}, optional) – Whether to output displace-
ment waveforms or velocity waveforms for real/ Wood-Anderson corrected traces. Default:
displacement

Raises
AttributeError – If real or wa waveforms are requested and no response inventory has been
provided.

46 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.io.cut_waveforms.write_waveforms(st, fpath, fstem, file_format)
Output waveform data as a waveform file – defaults to miniSEED format.

Parameters
• st (obspy.Stream object) – Waveforms to be written to file.

• fpath (pathlib.Path object) – Path to output directory.

• fstem (str) – File name (without suffix).

• file_format (str) – File format to write waveform data to. Options are all file formats
supported by ObsPy, including: “MSEED” (default), “SAC”, “SEGY”, “GSE2”

quakemigrate.io.data

Module for processing waveform files stored in a data archive.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.data.Archive(archive_path, stations, archive_format=None, **kwargs)
Bases: object

The Archive class handles the reading of archived waveform data.

It is capable of handling any regular archive structure. Requests to read waveform data are served up as a
WaveformData object.

If provided, a response inventory for the archive will be stored with the waveform data for response removal, if
needed (e.g. for local magnitude calculation, or to output real cut waveforms).

By default, data with mismatched sampling rates will only be decimated. If necessary, and if the user specifies
resample = True and an upfactor to upsample by upfactor = int for the waveform archive, data can also be
upsampled and then, if necessary, subsequently decimated to achieve the desired sampling rate.

For example, for raw input data sampled at a mix of 40, 50 and 100 Hz, to achieve a unified sampling rate of 50
Hz, the user would have to specify an upfactor of 5; 40 Hz x 5 = 200 Hz, which can then be decimated to 50 Hz
- see resample().

Parameters
• archive_path (str) – Location of seismic data archive: e.g.: “./DATA_ARCHIVE”.

• stations (pandas.DataFrame object) – Station information. Columns [“Latitude”, “Lon-
gitude”, “Elevation”, “Name”]. See read_stations()

• archive_format (str, optional) – Sets directory structure and file naming format for
different archive formats. See path_structure()

• kwargs (**dict) – See Archive Attributes for details.

archive_path

Location of seismic data archive: e.g.: ./DATA_ARCHIVE.

Type
pathlib.Path object

4.3. Source code 47

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

stations

Series object containing station names.

Type
pandas.Series object

format

Directory structure and file naming format of data archive.

Type
str

read_all_stations

If True, read all stations in archive for that time period. Else, only read specified stations.

Type
bool, optional

resample

If true, perform resampling of data which cannot be decimated directly to the desired sampling rate. See
resample()

Type
bool, optional

response_inv

ObsPy response inventory for this waveform archive, containing response information for each channel of
each station of each network.

Type
obspy.Inventory object, optional

pre_filt

Pre-filter to apply during the instrument response removal. E.g. (0.03, 0.05, 30., 35.) - all in Hz. (Default
None)

Type
tuple of floats

water_level

Water level to use in instrument response removal. (Default 60.)

Type
float

remove_full_response

Whether to remove the full response (including the effect of digital FIR filters) or just the instrument trans-
form function (as defined by the PolesZeros Response Stage). Significantly slower. (Default False)

Type
bool

upfactor

Factor by which to upsample the data to enable it to be decimated to the desired sampling rate, e.g. 40Hz
-> 50Hz requires upfactor = 5. See resample()

Type
int, optional

48 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

interpolate

If data is timestamped “off-sample” (i.e. a non-integer number of samples after midnight), whether to inter-
polate the data to apply the necessary correction. Default behaviour is to just alter the metadata, resulting
in a sub-sample timing offset. See shift_to_sample().

Type
bool, optional

path_structure(archive_format, channels='*')
Set the directory structure and file naming format of the data archive.

read_waveform_data(starttime, endtime)
Read in waveform data between two times.

path_structure(archive_format='YEAR/JD/STATION', channels='*')
Define the directory structure and file naming format of the data archive.

Parameters
• archive_format (str, optional) – Directory structure and file naming format of the

data archive. This may be the name of a generic archive format (e.g. SeisComp3), or one
of a selection of additional formats built into QuakeMigrate.

• channels (str, optional) – Channel codes to include. E.g. channels=”[B,H]H*”.
(Default “*”)

Raises
ArchivePathStructureError – If the archive_format specified by the user is not a valid
option.

read_waveform_data(starttime, endtime, pre_pad=0.0, post_pad=0.0)
Read in waveform data from the archive between two times.

Supports all formats currently supported by ObsPy, including: “MSEED”, “SAC”, “SEGY”, “GSE2”.

Optionally, read data with some pre- and post-pad, and for all stations in the archive - this will be stored in
data.raw_waveforms, while data.waveforms will contain only data for selected stations between starttime
and endtime.

Parameters
• starttime (obspy.UTCDateTime object) – Timestamp from which to read waveform data.

• endtime (obspy.UTCDateTime object) – Timestamp up to which to read waveform data.

• pre_pad (float, optional) – Additional pre pad of data to read. Defaults to 0.

• post_pad (float, optional) – Additional post pad of data to read. Defaults to 0.

Returns
data – Object containing the waveform data read from the archive that satisfies the query.

Return type
WaveformData object

Raises
• ArchiveEmptyException – If no data files are found in the archive for this day(s).

• DataAvailabilityException – If no data is found in the archive for the specified sta-
tions within the specified time window.

4.3. Source code 49

QuakeMigrate, Release 1.0.2

class quakemigrate.io.data.WaveformData(starttime, endtime, stations=None, response_inv=None,
water_level=60.0, pre_filt=None, remove_full_response=False,
read_all_stations=False, resample=False, upfactor=None,
pre_pad=0.0, post_pad=0.0)

Bases: object

The WaveformData class encapsulates the waveform data returned by an Archive query.

It also provides a number of utility functions. These include removing instrument response and checking data
availability against a flexible set of data quality criteria.

Parameters
• starttime (obspy.UTCDateTime object) – Timestamp of first sample of waveform data

requested from the archive.

• endtime (obspy.UTCDateTime object) – Timestamp of last sample of waveform data re-
quested from the archive.

• stations (pandas.Series object, optional) – Series object containing station names.

• read_all_stations (bool, optional) – If True, raw_waveforms contain all stations in
archive for that time period. Else, only selected stations will be included.

• resample (bool, optional) – If true, allow resampling of data which cannot be deci-
mated directly to the desired sampling rate. See resample() Default: False

• upfactor (int, optional) – Factor by which to upsample the data to enable it to be
decimated to the desired sampling rate, e.g. 40Hz -> 50Hz requires upfactor = 5. See
resample()

• response_inv (obspy.Inventory object, optional) – ObsPy response inventory for this wave-
form data, containing response information for each channel of each station of each network.

• pre_filt (tuple of floats) – Pre-filter to apply during the instrument response re-
moval. E.g. (0.03, 0.05, 30., 35.) - all in Hz. (Default None)

• water_level (float) – Water level to use in instrument response removal. (Default 60.)

• remove_full_response (bool) – Whether to remove the full response (including the effect
of digital FIR filters) or just the instrument transform function (as defined by the PolesZeros
Response Stage). Significantly slower. (Default False)

• pre_pad (float, optional) – Additional pre pad of data included in raw_waveforms.

• post_pad (float, optional) – Additional post pad of data included in raw_waveforms.

starttime

Timestamp of first sample of waveform data requested from the archive.

Type
obspy.UTCDateTime object

endtime

Timestamp of last sample of waveform data requested from the archive.

Type
obspy.UTCDateTime object

stations

Series object containing station names.

50 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Type
pandas.Series object

read_all_stations

If True, raw_waveforms contain all stations in archive for that time period. Else, only selected stations will
be included.

Type
bool

raw_waveforms

Raw seismic data read in from the archive. This may be for all stations in the archive, or only those specified
by the user. See read_all_stations. It may also cover the time period between starttime and endtime, or
feature an additional pre- and post-pad. See pre_pad and post_pad.

Type
obspy.Stream object

waveforms

Seismic data read in from the archive for the specified list of stations, between starttime and endtime.

Type
obspy.Stream object

pre_pad

Additional pre pad of data included in raw_waveforms.

Type
float

post_pad

Additional post pad of data included in raw_waveforms.

Type
float

check_availability(stream, **data_quality_params)
Check data availability against a set of data quality criteria.

get_wa_waveform(trace, **response_removal_params)
Calculate the Wood-Anderson corrected waveform for a obspy.Trace object.

Raises
NotImplementedError – If the user attempts to use the get_real_waveform() method.

check_availability(st, all_channels=False, n_channels=None, allow_gaps=False, full_timespan=True,
check_sampling_rate=False, sampling_rate=None, check_start_end_times=False)

Check waveform availability against data quality criteria.

There are a number of hard-coded checks: for whether any data is present; for whether the data is a flatline
(all samples have the same value); and for whether the data contains overlaps. There are a selection of
additional optional checks which can be specified according to the onset function / user preference.

Parameters
• st (obspy.Stream object) – Stream containing the waveform data to check against the avail-

ability criteria.

• all_channels (bool, optional) – Whether all supplied channels (distinguished by
SEED id) need to meet the availability criteria to mark the data as ‘available’.

4.3. Source code 51

QuakeMigrate, Release 1.0.2

• n_channels (int, optional) – If all_channels=True, this argument is required (in or-
der to specify the number of channels expected to be present).

• allow_gaps (bool, optional) – Whether to allow gaps.

• full_timespan (bool, optional) – Whether to ensure the data covers the entire times-
pan requested; note that this implicitly requires that there be no gaps. Checks the number
of samples in the trace, not the start and end times; for that see check_start_end_times.

• check_sampling_rate (bool, optional) – Check that all channels are at the desired
sampling rate.

• sampling_rate (float, optional) – If check_sampling_rate=True, this argument is
required to specify the sampling rate that the data should be at.

• check_start_end_times (bool, optional) – A stricter alternative to full_timespan;
checks that the first and last sample of the trace have exactly the requested timestamps.

Returns
• available (int) – 0 if data doesn’t meet the availability requirements; 1 if it does.

• availability (dict) – Dict of {tr_id : available} for each unique SEED ID in the input stream
(available is again 0 or 1).

Raises
TypeError – If the user specifies all_channels=True but does not specify n_channels.

get_real_waveform(tr, velocity=True)
Calculate the real waveform for a Trace by removing the instrument response.

Parameters
• tr (obspy.Trace object) – Trace containing the waveform for which to remove the instru-

ment response.

• velocity (bool, optional) – Output velocity waveform (as opposed to displacement).
Default: True.

Returns
tr – Trace with instrument response removed.

Return type
obspy.Trace object

Raises
• AttributeError – If no response inventory has been supplied.

• ResponseNotFoundError – If the response information for a trace can’t be found in the
supplied response inventory.

• ResponseRemovalError – If the deconvolution of the instrument response is unsuccess-
ful.

get_wa_waveform(tr, velocity=False)
Calculate simulated Wood Anderson displacement waveform for a Trace.

Parameters
• tr (obspy.Trace object) – Trace containing the waveform to be corrected to a Wood-

Anderson response.

52 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

• velocity (bool, optional) – Output velocity waveform, instead of displacement. De-
fault: False. NOTE: all attenuation functions provided within the QM local_mags module
are calculated for displacement seismograms.

Returns
tr – Trace corrected to Wood-Anderson response.

Return type
obspy.Trace object

quakemigrate.io.event

Module containing the Event class, which stores information related to an individual event.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.event.Event(marginal_window, triggered_event=None)
Bases: object

Light class to encapsulate information about an event, including waveform data, coalescence information, origin
time, locations, picks, magnitudes.

Parameters
• marginal_window (float) – Estimate of the uncertainty in the event origin time; time

window over which the 4-D coalescence image is marginalised around the peak coalescence
time (event origin time) to produce the 3-D coalescence map.

• triggered_event (pandas.Series object, optional) – Contains information on the candidate
event identified by trigger()

coa_data

Event coalescence data computed during locate.

DT
[numpy.ndarray of obspy.UTCDateTime objects, shape(nsamples)] Timestamps for the coalescence
data.

COA
[numpy.ndarray of floats, shape(nsamples)] Max coalescence value in the grid at each timestep.

COA_NORM
[numpy.ndarray of floats, shape(nsamples)] Normalised max coalescence value in the grid at each
timestep.

X
[numpy.ndarray of floats, shape(nsamples)] X coordinate of maximum coalescence value in the grid
at each timestep, in input (geographic) projection coordinates.

Y
[numpy.ndarray of floats, shape(nsamples)] Y coordinate of maximum coalescence value in the grid
at each timestep, in input (geographic) projection coordinates.

Z
[numpy.ndarray of floats, shape(nsamples)] Z coordinate of maximum coalescence value in the grid
at each timestep, in input (geographic) projection coordinates.

4.3. Source code 53

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Type
pandas.DataFrame object

data

Light class encapsulating waveform data returned from an archive query.

Type
WaveformData object

hypocentre

[X, Y, Z]; Geographical coordinates of the event hypocentre (default is interpolated peak of a spline function
fitted to the marginalised 3-D coalescence map).

Type
numpy.ndarray of floats

locations

Information on the various locations and reported uncertainties.

spline
[dict] The location of the peak coalescence value in the marginalised 3-D coalescence map, interpo-
lated using a 3-D spline. If no spline fit was able to be made, it is just the gridded peak location.

gaussian
[dict] The location and uncertainty as determined by fitting a 3-D Gaussian to the marginalised 3-D
coalescence map in a small region around the (gridded) peak coalescence location.

covariance
[dict] The location and uncertainty as determined by calculating the covariance of the coalescence
values in X, Y, and Z above some percentile of the max coalescence value in the marginalised 3-D
coalescence map.

Type
dict

map4d

4-D coalescence map generated in locate().

Type
numpy.ndarray, shape(nx, ny, nz, nsamp), optional

max_coalescence

Dictionary containing the raw and normalised maximum coalescence values in the 3-D grid at the times-
tamp corresponding to the instantaneous (non-marginalised) maximum coalescence value in the 4-D grid
(i.e. the event origin time).

Type
dict

onset_data

Light class encapsulating data generated during onset calculation.

Type
OnsetData object

otime

Timestamp of the instantaneous peak in the 4-D coalescence function generated in locate() - best estimate
of the event origin time.

54 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Type
obspy.UTCDateTime object

trigger_info

Useful information about the triggered event to be fed forward.

TRIG_COA
[float] The peak value of the coalescence stream used to trigger the event.

DEC_COA
[float] The coalescence value of the “raw” maximum coalsecence stream at the trigger_time.

DEC_COA_NORM
[float] The coalescence value of the normalised maximum coalsecence stream at the trigger_time.

Type
dict

trigger_time

The time of the peak in the continuous coalescence stream (output by detect) corresponding to the triggered
event.

Type
obspy.UTCDateTime object

uid

A unique identifier for the event based on the event trigger time.

Type
str

add_compute_output(times, max_coa, max_coa_n, coord, map4d, onset_data)
Add values returned by _compute() to the event.

add_covariance_location(xyz, xyz_unc)
Add the covariance location and uncertainty to the event.

add_gaussian_location(xyz, xyz_unc)
Add the gaussian location and uncertainty to the event.

add_spline_location(xyz)
Add the spline-interpolated location to the event.

add_picks(pick_df)
Add phase picks to the event.

add_local_magnitude(mag, mag_err, mag_r2)
Add local magnitude to the event.

add_waveform_data(data)
Add waveform data read from the archive to the event (as a WaveformData object).

in_marginal_window(marginal_window)
Simple test to see if event is within the marginal window around the event origin time (time of max instan-
taneous coalescence value).

mw_times(marginal_window, sampling_rate)
Generates timestamps for data in the window around the event trigger scanned by _compute(); trig-
ger_time +/- 2*`marginal_window`.

4.3. Source code 55

QuakeMigrate, Release 1.0.2

trim2window(marginal_window)
Trim the coalescence data and map4d to the marginal window about the event origin time.

write(run)
Output the event to a .event file.

get_hypocentre(method)
Get the event hypocentre estimate calculated by a specific method; {“gaussian”, “covariance”, “spline”}.

add_compute_output(times, max_coa, max_coa_n, coord, map4d, onset_data)
Append outputs of compute to the Event object. This includes time series of the maximum coalescence
values in the 3-D grid at each timestep, and their locations, the full 4-D coalescence map, and the onset
data generated for migration.

Parameters
• times (numpy.ndarray of obspy.UTCDateTime objects, shape(nsamples)) – Timestamps

for the coalescence data.

• max_coa (numpy.ndarray of floats, shape(nsamples)) – Max coalescence value in the grid
at each timestep.

• max_coa_n (numpy.ndarray of floats, shape(nsamples)) – Normalised max coalescence
value in the grid at each timestep.

• coord (numpy.ndarray of floats, shape(nsamples, 3)) – [x, y, z] Location of maximum
coalescence in the grid at each timestep, in input (geographic) projection coordinates

• map4d (numpy.ndarry, shape(nx, ny, nz, nsamp)) – 4-D coalescence map.

• onset_data (OnsetData object) – Light class encapsulating data generated during onset
calculation.

add_covariance_location(xyz, xyz_unc)
Add the location determined by calculating the 3-D covariance of the marginalised coalescence map filtered
above a percentile threshold.

Parameters
• xyz (numpy.ndarray of floats, shape(3)) – Geographical coordinates (lon/lat/depth) of co-

variance location.

• xyz_unc (`numpy.ndarray’ of floats, shape(3)) – One sigma uncertainties on the covariance
location (units determined by the LUT projection units).

add_gaussian_location(xyz, xyz_unc)
Add the location determined by fitting a 3-D Gaussian to a small window around the Gaussian smoothed
maximum coalescence location.

Parameters
• xyz (numpy.ndarray of floats, shape(3)) – Geographical coordinates (lon/lat/depth) of

Gaussian location.

• xyz_unc (`numpy.ndarray’ of floats, shape(3)) – One sigma uncertainties on the Gaussian
location (units determined by the LUT projection units).

add_local_magnitude(mag, mag_err, mag_r2)
Add outputs from local magnitude calculation to the Event object.

Parameters
• mag (float) – Network-averaged local magnitude estimate for the event.

56 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

• mag_err (float) – (Weighted) standard deviation of the magnitude estimates from am-
plitude measurements on individual stations/channels.

• mag_r2 (float) – r-squared statistic describing the fit of the amplitude vs. distance curve
predicted by the calculated mean_mag and chosen attenuation model to the measured am-
plitude observations. This is intended to be used to help discriminate between ‘real’ events,
for which the predicted amplitude vs. distance curve should provide a good fit to the ob-
servations, from artefacts, which in general will not.

add_picks(pick_df, **kwargs)
Add phase picks, and a selection of picker outputs and parameters.

Parameters
• pick_df (pandas.DataFrame object) – DataFrame that contains the measured picks with

columns: [“Name”, “Phase”, “ModelledTime”, “PickTime”, “PickError”, “SNR”] Each
row contains the phase pick from one station/phase.

• **kwargs – For GaussianPicker:

gaussfits
[dict of dicts] Keys “station”[“phase”], each containing:

”popt” : popt “xdata” : x_data “xdata_dt” : x_data_dt “PickValue” :
max_onset “PickThreshold” : threshold

pick_windows
[dict] {station : phase{window}}

window: [min_time, modelled_arrival, max_time] - all ints, referring to indices of
the onset function.

add_spline_location(xyz)
Add the location determined by fitting a 3-D spline to a small window around the maximum coalescence
location and interpolating.

Parameters
xyz (numpy.ndarray of floats, shape(3)) – Geographical coordinates (lon/lat/depth) of
best-fitting location.

add_waveform_data(data)
Add waveform data in the form of a WaveformData object.

Parameters
data (WaveformData object) – Contains cut waveforms - raw_waveforms may be for all
stations in the archive, and include an additional pre- and post-pad; waveforms contains
data only for the stations and time period required for migration.

get_hypocentre(method='spline')
Get an estimate of the event hypocentre location.

Parameters
method ({"spline", "gaussian", "covariance"}, optional) – Which loca-
tion result to return. (Default “spline”).

Returns
ev_loc – [x_coordinate, y_coordinate, z_coordinate] of event hypocentre, in the global
(geographic) coordinate system.

Return type
numpy.ndarray of floats

4.3. Source code 57

QuakeMigrate, Release 1.0.2

get_loc_uncertainty(method='gaussian')
Get an estimate of the hypocentre location uncertainty.

Parameters
method ({"gaussian", "covariance"}, optional) – Which location result to re-
turn. (Default “gaussian”).

Returns
ev_loc_unc – [x_uncertainty, y_uncertainty, z_uncertainty] of event hypocentre; units
are determined by the LUT projection units.

Return type
numpy.ndarray of floats

property hypocentre

Get an estimate of the event hypocentre location.

Parameters
method ({"spline", "gaussian", "covariance"}, optional) – Which loca-
tion result to return. (Default “spline”).

Returns
ev_loc – [x_coordinate, y_coordinate, z_coordinate] of event hypocentre, in the global
(geographic) coordinate system.

Return type
numpy.ndarray of floats

in_marginal_window()

Test if triggered event time is within marginal window around the maximum coalescence time (origin
time).

Returns
cond – Result of test.

Return type
bool

property loc_uncertainty

Get an estimate of the hypocentre location uncertainty.

Parameters
method ({"gaussian", "covariance"}, optional) – Which location result to re-
turn. (Default “gaussian”).

Returns
ev_loc_unc – [x_uncertainty, y_uncertainty, z_uncertainty] of event hypocentre; units
are determined by the LUT projection units.

Return type
numpy.ndarray of floats

property local_magnitude

Get the local magnitude, if it exists.

property max_coalescence

Get information related to the maximum coalescence.

mw_times(sampling_rate)
Utility function to generate timestamps for the time period around the trigger time for which the 4-D
coalescence function is calculated in _compute().

58 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Returns
times – Timestamps for time range trigger_time +/- 2 * marginal_window.

Return type
numpy.ndarray of obspy.UTCDateTime, shape(nsamples)

trim2window()

Trim the coalescence data to be within the marginal window.

write(run, lut)
Write event to a .event file.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

quakemigrate.io.scanmseed

Module to handle input/output of .scanmseed files.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.scanmseed.ScanmSEED(run, continuous_write, sampling_rate)
Bases: object

Light class to encapsulate the data output by the detect stage of QuakeMigrate. This data is stored in an ob-
spy.Stream object with the channels: [“COA”, “COA_N”, “X”, “Y”, “Z”].

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• continuous_write (bool) – Option to continuously write the .scanmseed file output
by detect() at the end of every time step. Default behaviour is to write in day chunks
where possible.

• sampling_rate (int) – Desired sampling rate of input data; sampling rate at which to
compute the coalescence function. Default: 50 Hz.

stream

Output of detect() stored in obspy.Stream object. The values have been multiplied by a factor to make
use of more efficient compression. Channels: [“COA”, “COA_N”, “X”, “Y”, “Z”]

Type
obspy.Stream object

written

Tracker for whether the data appended has been written recently.

Type
bool

append(times, max_coa, max_coa_n, coord, map4d=None)
Append the output of _compute() to the coalescence stream.

4.3. Source code 59

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

empty(starttime, timestep, i, msg)
Create an set of empty arrays for a given timestep and append to the coalescence stream.

write(write_start=None, write_end=None)
Write the coalescence stream to a .scanmseed file.

append(starttime, max_coa, max_coa_n, coord, ucf)
Append latest timestep of detect() output to obspy.Stream object.

Multiply channels [“COA”, “COA_N”, “X”, “Y”, “Z”] by factors of [“1e5”, “1e5”, “1e6”, “1e6”, “1e3”]
respectively, round and convert to int32 as this dramatically reduces memory usage, and allows the coas-
tream data to be saved in mSEED format with STEIM2 compression. The multiplication factor is removed
when the data is read back in.

Parameters
• starttime (obspy.UTCDateTime object) – Timestamp of first sample of coales-

cence data.

• max_coa (numpy.ndarray of floats, shape(nsamples)) – Coalescence value through
time.

• max_coa_n (numpy.ndarray of floats, shape(nsamples)) – Normalised coalescence
value through time.

• coord (numpy.ndarray of floats, shape(nsamples)) – Location of maximum coales-
cence through time in input projection space.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used
to ensure the same level of precision (millimetre) is retained during compression,
irrespective of the units of the grid projection.

empty(starttime, timestep, i, msg, ucf)
Create an empty set of arrays to write to .scanmseed; used where there is no data available to run
_compute().

Parameters
• starttime (obspy.UTCDateTime object) – Timestamp of first sample in the given

timestep.

• timestep (float) – Length (in seconds) of timestep used in detect().

• i (int) – The ith timestep of the continuous compute.

• msg (str) – Message to output to log giving details as to why this timestep is empty.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used
to ensure the same level of precision (millimetre) is retained during compression,
irrespective of the units of the grid projection.

write(write_start=None, write_end=None)
Write a new .scanmseed file from an obspy.Stream object containing the data output from detect(). Note:
values have been multiplied by a power of ten, rounded and converted to an int32 array so the data can be
saved as mSEED with STEIM2 compression. This multiplication factor is removed when the data is read
back in with read_scanmseed().

Parameters
• write_start (obspy.UTCDateTime object, optional) – Timestamp from which to

write the coalescence stream to file.

60 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

• write_end (obspy.UTCDateTime object, optional) – Timestamp up to which to
write the coalescence stream to file.

quakemigrate.io.scanmseed.read_scanmseed(run, starttime, endtime, pad, ucf)
Read .scanmseed files between two time stamps. Files are labelled by year and Julian day.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object) – Timestamp from which to read the coales-
cence stream.

• endtime (obspy.UTCDateTime object) – Timestamp up to which to read the coalescence
stream.

• pad (float) – Read in “pad” seconds of additional data on either end.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used to
ensure the same level of precision (millimetre) is retained during compression, irrespec-
tive of the units of the grid projection.

Returns
• data (pandas.DataFrame object) – Data output by detect() – decimated scan. Columns:

[“DT”, “COA”, “COA_N”, “X”, “Y”, “Z”] - X/Y/Z as lon/lat/units where units is the
user-selected units of the lookup table grid projection (either metres or kilometres).

• stats (obspy.trace.Stats object) – Container for additional header information for coa-
lescence trace. Contains keys: network, station, channel, starttime, endtime,

sampling_rate, delta, npts, calib, _format, mseed

quakemigrate.io.triggered_events

Module to handle input/output of TriggeredEvents.csv files.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.triggered_events.read_triggered_events(run, **kwargs)
Read triggered events from .csv file.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object, optional) – Timestamp from which to include
events in the locate scan.

• endtime (obspy.UTCDateTime object, optional) – Timestamp up to which to include
events in the locate scan.

• trigger_file (str, optional) – File containing triggered events to be located.

Returns
events – Triggered events information. Columns: [“EventID”, “CoaTime”, “TRIG_COA”,
“COA_X”, “COA_Y”, “COA_Z”, “COA”, “COA_NORM”].

Return type
pandas.DataFrame object

4.3. Source code 61

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.io.triggered_events.write_triggered_events(run, events, starttime)
Write triggered events to a .csv file.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• events (pandas.DataFrame object) – Triggered events information. Columns:
[“EventID”, “CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “COA”,
“COA_NORM”].

• starttime (obspy.UTCDateTime object) – Timestamp from which events have been
triggered.

4.3.4 quakemigrate.lut

The quakemigrate.lutmodule handles the definition and generation of the traveltime lookup tables used in QuakeM-
igrate.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.lut.update_lut(old_lut_file, save_file)
Utility function to convert old-style LUTs to new-style LUTs.

Parameters
• old_lut_file (str) – Path to lookup table file to update.

• save_file (str, optional) – Output path for updated lookup table.

quakemigrate.lut.create_lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.lut.create_lut.compute_traveltimes(grid_spec, stations, method, phases=['P', 'S'],
fraction_tt=0.1, save_file=None, log=False,
**kwargs)

Top-level method for computing traveltime lookup tables.

This function takes a grid specification and is capable of computing traveltimes for an arbitrary number of phases
using a variety of techniques.

Parameters
• grid_spec (dict) – Dictionary containing all of the defining parameters for the un-

derlying 3-D grid on which the traveltimes are to be calculated. For expected keys, see
Grid3D.

• stations (pandas.DataFrame) – DataFrame containing station information
(lat/lon/elev).

• method (str) – Method to be used when computing the traveltime lookup tables.

62 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

”homogeneous” - straight line velocities.

”1dfmm” - 1-D fast-marching method using scikit-fmm.

”1dnlloc” - a 2-D traveltime grid is calculated from the 1-D velocity model
using the Grid2Time eikonal solver in NonLinLoc, then swept over the 3-D
grid using a bilinear interpolation scheme.

• phases (list of str, optional) – List of seismic phases for which to calculate
traveltimes.

• fraction_tt (float, optional) – An estimate of the uncertainty in the velocity
model as a function of a fraction of the traveltime. (Default 0.1 == 10%)

• save_file (str, optional) – Path to location to save pickled lookup table.

• log (bool, optional) – Toggle for logging - default is to only print information to
stdout. If True, will also create a log file.

• kwargs (dict) – Dictionary of all keyword arguments passed to compute when called.
For lists of valid arguments, please refer to the relevant method.

Returns
lut – Lookup table populated with traveltimes.

Return type
LUT object

Raises
• ValueError – If the specified method is not a valid option.

• TypeError – If the velocity model, or constant phase velocity, is not specified.

• NotImplementedError – If the 3dfmm method is specified.

quakemigrate.lut.create_lut.read_nlloc(path, stations, phases=['P', 'S'], fraction_tt=0.1, save_file=None,
log=False)

Read in a traveltime lookup table that is saved in the NonLinLoc format.
Parameters

• path (str) – Path to directory containing .buf and .hdr files.

• stations (pandas.DataFrame) – DataFrame containing station information
(lat/lon/elev).

• phases (list of str, optional) – List of seismic phases for which to read in trav-
eltimes.

• fraction_tt (float, optional) – An estimate of the uncertainty in the velocity
model as a function of a fraction of the traveltime. (Default 0.1 == 10%)

• save_file (str, optional) – Path to location to save pickled lookup table.

• log (bool, optional) – Toggle for logging - default is to only print information to
stdout. If True, will also create a log file.

Returns
lut – Lookup table populated with traveltimes from the NonLinLoc lookup table files.

Return type
LUT object

Raises
NotImplementedError – If the specified projection type is not supported.

4.3. Source code 63

QuakeMigrate, Release 1.0.2

quakemigrate.lut.lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.lut.lut.Grid3D(ll_corner, ur_corner, node_spacing, grid_proj, coord_proj)
Bases: object

A grid object represents a collection of points in a 3-D Cartesian space that can be used to produce regularised
traveltime lookup tables that sample the continuous traveltime space for each station in a seismic network.

This class also provides the series of transformations required to move between the input projection, the grid
projection and the grid index coordinate spaces.

The size and shape specifications of the grid are defined by providing the (input projection) coordinates for the
lower-left and upper-right corners, a node spacing and the projections (defined using pyproj) of the input and
grid spaces.

coord_proj

Input coordinate space projection.

Type
pyproj.Proj object

grid_corners

Positions of the corners of the grid in the grid coordinate space.

Type
array-like, shape (8, 3)

grid_proj

Grid space projection.

Type
pyproj.Proj object

grid_xyz

Positions of the grid nodes in the grid coordinate space. The shape of each element of the list is defined
by the number of nodes in each dimension.

Type
array-like, shape (3, nx, ny, nz)

ll_corner

Location of the lower-left corner of the grid in the grid projection. Should also contain the minimum depth
in the grid.

Type
array-like, [float, float, float]

node_count

Number of nodes in each dimension of the grid. This is calculated by finding the number of nodes with a
given node spacing that fit between the lower-left and upper-right corners. This value is rounded up if the
number of nodes returned is non-integer, to ensure the requested area is included in the grid.

64 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Type
array-like, [int, int, int]

node_spacing

Distance between nodes in each dimension of the grid.

Type
array-like, [float, float, float]

precision

An appropriate number of decimal places for distances as a function of the node spacing and coordinate
projection.

Type
list of float

unit_conversion_factor

A conversion factor based on the grid projection, used to convert between units of metres and kilometres.

Type
float

unit_name

Shorthand string for the units of the grid projection.

Type
str

ur_corner

Location of the upper-right corner of the grid in the grid projection. Should also contain the maximum
depth in the grid.

Type
array-like, [float, float, float]

coord2grid(value, inverse=False, clip=False)
Provides a transformation between the input projection and grid coordinate spaces.

decimate(df, inplace=False)
Downsamples the traveltime lookup tables by some decimation factor.

index2coord(value, inverse=False, unravel=False, clip=False)
Provides a transformation between grid indices (can be a flattened index or an [i, j, k] position) and the
input projection coordinate space.

index2grid(value, inverse=False, unravel=False)
Provides a transformation between grid indices (can be a flattened index or an [i, j, k] position) and the
grid coordinate space.

property cell_count

Handler for deprecated attribute name ‘cell_count’

property cell_size

Handler for deprecated attribute name ‘cell_size’

coord2grid(value, inverse=False)
Convert between input coordinate space and grid coordinate space.

Parameters

4.3. Source code 65

QuakeMigrate, Release 1.0.2

• value (array-like) – Array (of arrays) containing the coordinate locations to be
transformed. Each sub-array should describe a single point in the 3-D input space.

• inverse (bool, optional) – Reverses the direction of the transform. Default
input coordinates -> grid coordinates

Returns
out – Returns an array of arrays of the transformed values.

Return type
array-like

decimate(df, inplace=False)
Resample the traveltime lookup tables by decimation by some factor.

Parameters
• df (array-like [int, int, int]) – Decimation factor in each dimension.

• inplace (bool, optional) – Perform the operation on the lookup table object
or a copy.

Returns
grid – Returns a Grid3D object with decimated traveltime lookup tables.

Return type
Grid3D object (optional)

get_grid_extent(cells=False)
Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid nodes. It is useful, for visualisation
purposes, to also be able to determine the grid extent as the convex hull of a grid of cells centred on the
grid nodes.

Parameters
cells (bool, optional) – Specifies the grid mode (nodes / cells) for which to calcu-
late the extent.

Returns
extent – Pair of arrays representing two corners for the grid.

Return type
array-like

property grid_corners

Get the xyz positions of the nodes on the corners of the grid.

property grid_extent

Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid nodes. It is useful, for visualisation
purposes, to also be able to determine the grid extent as the convex hull of a grid of cells centred on the
grid nodes.

Parameters
cells (bool, optional) – Specifies the grid mode (nodes / cells) for which to calcu-
late the extent.

Returns
extent – Pair of arrays representing two corners for the grid.

66 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Return type
array-like

property grid_xyz

Get the xyz positions of all of the nodes in the grid.

index2coord(value, inverse=False, unravel=False)
Convert between grid indices and input coordinate space.

This is a utility function that wraps the other two defined transforms.

Parameters
• value (array-like) – Array (of arrays) containing the grid indices (grid coordi-

nates) to be transformed. Can be an array of flattened indices.

• inverse (bool, optional) – Reverses the direction of the transform. Default
indices -> input projection coordinates.

• unravel (bool, optional) – Convert a flat index or array of flat indices into a
tuple of coordinate arrays.

Returns
out – Returns an array of arrays of the transformed values.

Return type
array-like

index2grid(value, inverse=False, unravel=False)
Convert between grid indices and grid coordinate space.

Parameters
• value (array-like) – Array (of arrays) containing the grid indices (grid coordi-

nates) to be transformed. Can be an array of flattened indices.

• inverse (bool, optionale) – Reverses the direction of the transform. Default
indices -> grid coordinates.

• unravel (bool, optional) – Convert a flat index or array of flat indices into a
tuple of coordinate arrays.

Returns
out – Returns an array of arrays of the transformed values.

Return type
array-like

property node_count

Get and set the number of nodes in each dimension of the grid.

property node_spacing

Get and set the spacing of nodes in each dimension of the grid.

property precision

Get appropriate number of decimal places as a function of the node spacing and coordinate projection.

property unit_conversion_factor

Expose unit_conversion_factor of the grid projection.

property unit_name

Expose unit_name of the grid_projection and return shorthand.

4.3. Source code 67

QuakeMigrate, Release 1.0.2

class quakemigrate.lut.lut.LUT(fraction_tt=0.1, lut_file=None, **grid_spec)
Bases: Grid3D

A lookup table (LUT) object is a simple data structure that is used to store a series of regularised tables that, for
each seismic station in a network, store the traveltimes to every point in the 3-D volume. These lookup tables
are pre-computed to efficiently carry out the migration.

This class provides utility functions that can be used to serve up or query these pre-computed lookup tables.

This object is-a Grid3D.

fraction_tt

An estimate of the uncertainty in the velocity model as a function of a fraction of the traveltime. (Default
0.1 == 10%)

Type
float

max_traveltime

The maximum traveltime between any station and a point in the grid.

Type
float

phases

Seismic phases for which there are traveltime lookup tables available.

Type
list of str

stations_xyz

Positions of the stations in the grid coordinate space.

Type
array-like, shape (n, 3)

traveltimes

A dictionary containing the traveltime lookup tables. The structure of this dictionary is:

traveltimes
• “<Station1-ID>”

– “<PHASE>”

– “<PHASE>”

• “<Station2-ID”
– “<PHASE>”

– “<PHASE>”

etc

Type
dict

velocity_model

Contains the input velocity model specification.

Type
pandas.DataFrame object

68 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

serve_traveltimes(sampling_rate)
Serve up the traveltime lookup tables.

traveltime_to(phase, ijk)
Query traveltimes to a grid location (in terms of indices) for a particular phase.

save(filename)
Dumps the current state of the lookup table object to a pickle file.

load(filename)
Restore the state of the saved LUT object from a pickle file.

plot(fig, gs, slices=None, hypocentre=None, station_clr='k')
Plot cross-sections of the LUT with station locations. Optionally plot slices through a coalescence image.

load(filename)
Read the contents of a pickle file and restore state of the lookup table object.

Parameters
filename (str) – Path to pickle file to load.

property max_extent

Get the minimum/maximum geographical extent of the stations/grid.

property max_traveltime

Get the maximum traveltime from any station across the grid.

plot(fig, gs, slices=None, hypocentre=None, station_clr='k', station_list=None)
Plot the lookup table for a particular station.

Parameters
• fig (matplotlib.Figure object) – Canvas on which LUT is plotted.

• gs (tuple(int, int)) – Grid specification for the plot.

• slices (array of arrays, optional) – Slices through a coalescence image
to plot.

• hypocentre (array of floats) – Event hypocentre - will add cross-hair to plot.

• station_clr (str, optional) – Plot the stations with a particular colour.

• station_list (list-like of str, optional) – List of stations from the
LUT to plot - useful if only a subset have been selected to be used in e.g. locate.

save(filename)
Dump the current state of the lookup table object to a pickle file.

Parameters
filename (str) – Path to location to save pickled lookup table.

serve_traveltimes(sampling_rate, availability=None)
Serve up the traveltime lookup tables.

The traveltimes are multiplied by the scan sampling rate and converted to integers.

Parameters
• sampling_rate (int) – Samples per second used in the scan run.

• availability (dict, optional) – Dict of stations and phases for which to serve
traveltime lookup tables: keys “station_phase”.

4.3. Source code 69

QuakeMigrate, Release 1.0.2

Returns
traveltimes – Stacked traveltime lookup tables for all seismic phases, stacked along the
station axis, with shape(nx, ny, nz, nstations)

Return type
numpy.ndarray of numpy.int

property station_extent

Get the minimum/maximum extent of the seismic network.

property stations_xyz

Get station locations in the grid space [X, Y, Z].

traveltime_to(phase, ijk, station=None)
Serve up the traveltimes to a grid location for a particular phase.

Parameters
• phase (str) – The seismic phase to lookup.

• ijk (array-like) – Grid indices for which to serve traveltime.

• station (str or list-like (of str), optional) – Station or stations for
which to serve traveltimes. Can be str (for a single station) or list / pandas.Series
object for multiple.

Returns
traveltimes – Array of interpolated traveltimes to the requested grid position.

Return type
array-like

4.3.5 quakemigrate.plot

The quakemigrate.plot module provides methods for the generation of figures in QuakeMigrate, including:

• Event summaries

• Phase pick summaries

• Triggered event summaries

• Amplitude / local magnitude summaries

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

70 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

quakemigrate.plot.event

Module containing methods to generate event summaries and videos.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.event.event_summary(run, event, marginalised_coa_map, lut, xy_files=None)
Plots an event summary illustrating the locate results: slices through the marginalised coalescence map with the
best location estimate (peak of interpolated spline fitted to 3-D coalescence map) and uncertainty ellipse from
gaussian fit to gaussian-smoothed 3-D coalescence map. Plus a waveform gather of the pre-processed waveform
data used to calculate the onset functions (sorted by distance from the event), and a plot of the maximum value
of the 4-D coalescence function through time.

Parameters
• run (Run object) – Light class encapsulating i/o path information for a given run.

• event (Event object) – Light class encapsulating waveforms, coalescence information,
picks and location information for a given event.

• marginalised_coa_map (numpy.ndarray of numpy.double) – Marginalised 3-D coa-
lescence map, shape(nx, ny, nz).

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

• xy_files (str, optional) – Path to comma-separated value file (.csv) containing a
series of coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”, “Linestyle”],
where “File” is the absolute path to the file containing the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines
pre-pended with # will be treated as a comment - this can be used to include references.
See the Volcanotectonic_Iceland example XY_files for a template.

Note: Do not include a header line in either file.

quakemigrate.plot.phase_picks

Module to produce a summary plot for the phase picking.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.phase_picks.pick_summary(event, station, waveforms, picks, onsets, ttimes, windows)
Plot a figure showing the pre-processed traces for each data component and the onset functions calculated from
them for each phase. The search window to make a phase pick is displayed, along with the dynamic pick threshold,
the phase pick time and its uncertainty (if made) and the Gaussian fit to the onset function.

Parameters
• event (Event object) – Light class encapsulating waveforms, coalescence information,

picks and location information for a given event.

4.3. Source code 71

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

• station (str) – Station code.

• waveforms (obspy.Stream object) – Filtered seismic data used to calculate the onset
functions.

• picks (pandas.DataFrame object) – Phase pick times with columns [“Name”, “Phase”,
“ModelledTime”, “PickTime”, “PickError”, “SNR”] Each row contains the phase pick
from one station/phase.

• onsets (dict of {str: numpy.ndarray}) – Keys are phases. Onset functions for each
seismic phase.

• ttimes (list of float) – Modelled traveltimes from the event hypocentre to the
station for each phase to be plotted.

• windows (dict of list, [int, int, int]) – Keys are phase. Indices specifying
the window within which the pick was made [start, modelled_arrival, end].

Returns
fig – Figure showing phase picking information.

Return type
matplotlib.Figure object

quakemigrate.plot.trigger

Module to plot the triggered events on a decimated grid.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.trigger.trigger_summary(events, starttime, endtime, run, marginal_window,
min_event_interval, detection_threshold,
normalise_coalescence, lut, data, region, discarded_events,
interactive, xy_files=None, plot_all_stns=True)

Plots the data from a .scanmseed file with annotations illustrating the trigger results: event triggers and marginal
windows on the coalescence traces, and map and cross section view of the gridded triggered earthquake locations.

Parameters
• events (pandas.DataFrame) – Triggered events information, columns: [“EventID”,

“CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “MinTime”, “Max-
Time”, “COA”, “COA_NORM”].

• starttime (obspy.UTCDateTime) – Start time of trigger run.

• endtime (obspy.UTCDateTime) – End time of trigger run.

• run (Run object) – Light class encapsulating i/o path information for a given run.

• marginal_window (float) – Time window over which to marginalise the 4D coales-
cence function.

• min_event_interval (float) – Minimum time interval between triggered events.

• detection_threshold (array-like) – Coalescence value above which to trigger
events.

• normalise_coalescence (bool) – If True, use coalescence normalised by the average
coalescence value in the 3-D grid at each timestep.

72 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

• lut (LUT object) – Contains the traveltime lookup tables for the selected seismic phases,
computed for some pre-defined velocity model.

• data (pandas.DataFrame) – Data output by detect() – continuous scan, columns:
[“COA”, “COA_N”, “X”, “Y”, “Z”]

• region (list) – Geographical region within which to trigger earthquakes; events lo-
cated outside this region will be discarded.

• discarded_events (pandas.DataFrame) – Discarded triggered events information,
columns: [“EventID”, “CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”,
“MinTime”, “MaxTime”, “COA”, “COA_NORM”].

• interactive (bool) – Toggles whether to produce an interactive plot.

• xy_files (str, optional) – Path to comma-separated value file (.csv) containing a
series of coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”, “Linestyle”],
where “File” is the absolute path to the file containing the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines
pre-pended with # will be treated as a comment - this can be used to include references.
See the Volcanotectonic_Iceland example XY_files for a template.

Note: Do not include a header line in either file.

• plot_all_stns (bool, optional) – If true, plot all stations used for detect. Other-
wise, only plot stations which for which some data was available during the trigger time
window. NOTE: if no station availability data is found, all stations in the LUT will be
plotted. (Default, True)

4.3.6 quakemigrate.signal

The quakemigrate.signal module handles the core of the QuakeMigrate methods. This includes:

• Generation of onset functions from raw data.

• Picking of waveforms from onset functions.

• Migration of onsets for detect() and locate().

• Measurement of phase amplitudes and calculation of local earthquake magnitudes.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

4.3. Source code 73

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Subpackages

quakemigrate.signal.onsets

The quakemigrate.onsets module handles the generation of Onset functions. The default method uses the ratio
between the short-term and long-term averages of the signal amplitude.

Feel free to contribute more Onset function options!

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.signal.onsets.base

A simple abstract base class with method stubs to enable users to extend QuakeMigrate with custom onset functions
that remain compatible with the core of the package.

Also contains a light class to encapsulate the data generated by the onset function, to be used for migration or phase
picking.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.onsets.base.Onset(**kwargs)
Bases: ABC

QuakeMigrate default onset function class.

sampling_rate

Desired sampling rate for input data; sampling rate at which the onset functions will be computed.

Type
int

pre_pad

Option to override the default pre-pad duration of data to read before computing 4-D coalescence in detect()
and locate().

Type
float, optional

post_pad

Option to override the default post-pad duration of data to read before computing 4-D coalescence in
detect() and locate().

Type
float

calculate_onsets()

Generate onset functions that represent seismic phase arrivals

pad(timespan)
Create appropriate padding to include the taper.

74 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

abstract calculate_onsets()

Method stub for calculation of onset functions.

gaussian_halfwidth(phase)
Method stub for Gaussian half-width estimate.

pad(timespan)
Determine the number of samples needed to pre- and post-pad the timespan.

Parameters
timespan (float) – The time window to pad.

Returns
• pre_pad (float) – Option to override the default pre-pad duration of data to read

before computing 4-D coalescence in detect() and locate().

• post_pad (float) – Option to override the default post-pad duration of data to read
before computing 4-D coalescence in detect() and locate().

abstract property post_pad

Get property stub for pre_pad.

abstract property pre_pad

Get property stub for pre_pad.

class quakemigrate.signal.onsets.base.OnsetData(onsets, phases, channel_maps, filtered_waveforms,
availability, starttime, endtime, sampling_rate)

Bases: object

The OnsetData class encapsulates the onset functions calculated by transforming seismic data using the chosen
onset detection algorithm (characteristic function).

This includes a dictionary describing which onset functions are available for each station and phase, and the
intermediary filtered or otherwise pre-processed waveform data used to calculate the onset function.

Parameters
• onsets (dict of dicts) – Keys “station”, each of which contains keys for each phase,

e.g. “P” and “S”. {“station”: {“P”: p_onset, “S”: s_onset}}. Onset functions are calcu-
lated by transforming the raw seismic data using some characteristic function designed
to highlight phase arrivals.

• phases (list of str) – Phases for which onsets have been calculated. (e.g. [“P”,
“S”])

• channel_maps (dict of str) – Data component maps - keys are phases. (e.g. {“P”:
“Z”})

• filtered_waveforms (obspy.Stream object) – Filtered and/or resampled and other-
wise processed seismic data generated during onset function generation. Only contains
waveforms that have passed the quality control criteria, at a unified sampling rate - see
sampling_rate.

• availability (dict) – Dictionary with keys “station_phase”, containing 1’s or 0’s
corresponding to whether an onset function is available for that station and phase - de-
termined by data availability and quality checks.

• starttime (obspy.UTCDateTime object) – Start time of onset functions.

• endtime (obspy.UTCDateTime object) – End time of onset functions.

• sampling_rate (int) – Sampling rate of filtered waveforms and onset functions.

4.3. Source code 75

QuakeMigrate, Release 1.0.2

quakemigrate.signal.onsets.stalta

The default onset function class - performs some pre-processing on raw seismic data and calculates STA/LTA onset
(characteristic) function.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.onsets.stalta.CentredSTALTAOnset(**kwargs)
Bases: STALTAOnset

QuakeMigrate default onset function class - uses a centred STA/LTA onset.

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

class quakemigrate.signal.onsets.stalta.ClassicSTALTAOnset(**kwargs)
Bases: STALTAOnset

QuakeMigrate default onset function class - uses a classic STA/LTA onset.

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

class quakemigrate.signal.onsets.stalta.STALTAOnset(**kwargs)
Bases: Onset

QuakeMigrate default onset function class - uses the Short-Term Average to Long-Term Average ratio of the
signal energy amplitude.

Raw seismic data will be pre-processed, including re-sampling if necessary to reach the specified uniform sam-
pling raate, checked against a user- specified set of data quality criteria, then used to calculate onset functions
for each phase (using seismic channels as specified in channel_maps) by computing the STA/LTA of s^2.

phases

Which phases to calculate onset functions for. This will determine which phases are used for migra-
tion/picking. The selected phases must be present in the travel-time look-up table to be used for these
purposes.

Type
list of str

bandpass_filters

Butterworth bandpass filter specification - keys are phases. [lowpass (Hz), highpass (Hz), corners*]
*NOTE: two-pass filter effectively doubles the number of corners.

Type
dict of [float, float, int]

channel_maps

Data component maps - keys are phases. These are passed into the ObsPy.stream.select() method.

Type
dict of str

channel_counts

Number of channels to be used to calculate the onset function for each phase. Keys are phases.

Type
dict of int

76 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

sta_lta_windows

Short-term average (STA) and Long-term average (LTA) window lengths - keys are phases. [STA, LTA]
(both in seconds)

Type
dict of [float, float]

all_channels

If True, only calculate an onset function when all requested channels meet the availability criteria. Other-
wise, if at least one channel is available (e.g. just the N component for the S phase) the onset function will
be calculated from that/those.

Type
bool

allow_gaps

If True, allow gappy data to be used to calculate the onset function. Gappy data will be detrended, tapered
and filtered, then gaps padded with zeros. This should help mitigate the expected spikes as data goes on-
and off-line, but will not eliminate it. Onset functions for periods with no data will be filled with ~ zeros
(smallest possible float, to avoid divide by zero errors). NOTE: This feature is experimental and still under
development.

Type
bool

full_timespan

If False, allow data which doesn’t cover the full timespan requested to be used for onset function calculation.
This is a subtly different test to allow_gaps; data must be continuous within the timespan, but may not span
the whole period. Data will be treated as described in allow_gaps. NOTE: This feature is experimental
and still under development.

Type
bool

position

Compute centred STA/LTA (STA window is preceded by LTA window; value is assigned to end of LTA
window / start of STA window) or classic STA/LTA (STA window is within LTA window; value is assigned
to end of STA & LTA windows). Default: “classic”.

Centred gives less phase-shifted (late) onset function, and is closer to a Gaussian approximation, but is
far more sensitive to data with sharp offsets due to instrument failures. We recommend using classic for
detect() and centred for locate() if your data quality allows it. This is the default behaviour; override by
setting this variable.

Type
str, optional

sampling_rate

Desired sampling rate for input data, in Hz; sampling rate at which the onset functions will be computed.

Type
int

calculate_onsets()

Generate onset functions that represent seismic phase arrivals.

gaussian_halfwidth()

Phase-appropriate Gaussian half-width estimate based on the short-term average window length.

4.3. Source code 77

QuakeMigrate, Release 1.0.2

calculate_onsets(data, log=True, timespan=None)
Calculate onset functions for the requested stations and phases.

Returns a stacked array of onset functions for the requested phases, and an OnsetData object containing
all outputs from the onset function calculation: a dict of the onset functions, a Stream containing the pre-
processed input waveforms, and a dict of availability info describing which of the requested onset functions
could be calculated (depending on data availability and data quality checks).

Parameters
• data (WaveformData object) – Light class encapsulating data returned by an

archive query.

• log (bool) – Calculate log(onset) if True, otherwise calculate the raw onset.

• timespan (float or None, optional) – If the timespan for which the onsets
are being generated is provided, this will be used to calculate the tapered window
of data at the start and end of the onset function which should be disregarded. This
is necessary to accurately set the pick threshold in GaussianPicker, for example.

Returns
• onsets (numpy.ndarray of float) – Stacked onset functions served up for migration,

shape(nonsets, nsamples).

• onset_data (OnsetData object) – Light class encapsulating data generated during
onset calculation.

gaussian_halfwidth(phase)
Return the phase-appropriate Gaussian half-width estimate based on the short-term average window length.

Parameters
phase ({'P', 'S'}) – Seismic phase for which to serve the estimate.

property onset_centred

Handle deprecated onset_centred kwarg / attribute

property p_bp_filter

Handle deprecated p_bp_filter kwarg / attribute

property p_onset_win

Handle deprecated p_onset_win kwarg / attribute

property post_pad

Post-pad is determined as a function of the max traveltime in the grid and the onset windows

property pre_pad

Pre-pad is determined as a function of the onset windows

property s_bp_filter

Handle deprecated s_bp_filter kwarg / attribute

property s_onset_win

Handle deprecated s_onset_win kwarg / attribute

quakemigrate.signal.onsets.stalta.pre_process(stream, sampling_rate, resample, upfactor, filter_,
starttime, endtime)

Resample raw seismic data, detrend and apply cosine taper and zero phase-shift Butterworth band-pass filter; all
carried out using the built-in obspy functions.

78 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

By default, data with mismatched sampling rates will only be decimated. If necessary, and if the user has specified
resample = True and an upfactor to upsample by upfactor = int for the waveform archive, data can also be
upsampled and then, if necessary, subsequently decimated to achieve the desired sampling rate.

For example, for raw input data sampled at a mix of 40, 50 and 100 Hz, to achieve a unified sampling rate of 50
Hz, the user would have to specify an upfactor of 5; 40 Hz x 5 = 200 Hz, which can then be decimated to 50 Hz.

NOTE: data will be detrended and a cosine taper applied before decimation, in order to avoid edge effects when
applying the lowpass filter. See resample()

Parameters
• stream (obspy.Stream object) – Waveform data to be pre-processed.

• sampling_rate (int) – Desired sampling rate for data to be used to calculate onset.
This will be achieved by resampling the raw waveform data. By default, only decimation
will be applied, but data can also be upsampled if specified by the user when creating
the Archive object.

• resample (bool, optional) – If true, perform resampling of data which cannot be
decimated directly to the desired sampling rate. See resample()

• upfactor (int, optional) – Factor by which to upsample the data to enable it to be
decimated to the desired sampling rate, e.g. 40Hz -> 50Hz requires upfactor = 5. See
resample()

• filter (list) – Filter specifications, as [lowcut (Hz), highcut (Hz), order]. NOTE -
two-pass filter effectively doubles the number of corners (order).

Returns
filtered_waveforms – Pre-processed seismic data.

Return type
obspy.Stream object

Raises
NyquistException – If the high-cut filter specified for the bandpass filter is higher than the
Nyquist frequency of the sampling_rate.

quakemigrate.signal.onsets.stalta.sta_lta_centred(signal, nsta, nlta)
Calculates the ratio of the average of a^2 in a short-term (signal) window to a preceding long-term (noise)
window. STA/LTA value is assigned to the end of the LTA /one sample before the start of the STA.

Parameters
• signal (array-like) – Signal array

• nsta (int) – Number of samples in short-term window

• nlta (int) – Number of samples in long-term window

Returns
sta / lta – Ratio of a^2 in a short term average window to a preceding long term average
window. STA/LTA value is assigned to end of LTA window / one sample before the start of
STA window – “centred”.

Return type
array-like

4.3. Source code 79

QuakeMigrate, Release 1.0.2

quakemigrate.signal.pickers

The quakemigrate.pickers module handles the picking of seismic phases. The default method makes the phase
picks by fitting a 1-D Gaussian to the Onset function.

Feel free to contribute more phase picking methods!

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.signal.pickers.base

A simple abstract base class with method stubs enabling simple modification of QuakeMigrate to use custom phase
picking methods that remain compatible with the core of the package.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.pickers.base.PhasePicker(**kwargs)
Bases: ABC

Abstract base class providing a simple way of modifying the default picking function in QuakeMigrate.

plot_picks

Toggle plotting of phase picks.

Type
bool

pick_phases()

Abstract method stub providing interface with QuakeMigrate scan.

write(event_uid, phase_picks, output)
Outputs phase picks to file.

plot()

Method stub for phase pick plotting.

abstract pick_phases()

Method stub for phase picking.

plot()

Method stub for phase pick plotting.

write(run, event_uid, phase_picks)
Write phase picks to a new .picks file.

Parameters
• event_uid (str) – Unique identifier for the event.

• phase_picks (pandas DataFrame object) –

80 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Phase pick times with columns: [“Name”, “Phase”,
”ModelledTime”, “PickTime”, “PickError”, “SNR”]

Each row contains the phase pick from one station/phase.

• output (QuakeMigrate input/output control object) – Contains useful
methods controlling output for the scan.

quakemigrate.signal.pickers.gaussian

The default seismic phase picking class - fits a 1-D Gaussian to the calculated onset functions.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.pickers.gaussian.GaussianPicker(onset=None, **kwargs)
Bases: PhasePicker

This class details the default method of making phase picks shipped with QuakeMigrate, namely fitting a 1-D
Gaussian function to the onset function for each station and phase.

phase_picks

“GAU_P”
[array-like] Numpy array stack of Gaussian pick info (each as a dict) for P phase

“GAU_S”
[array-like] Numpy array stack of Gaussian pick info (each as a dict) for S phase

Type
dict

threshold_method

Which method to use to calculate the pick threshold; a percentile of the data outside the pick windows
(e.g. 0.99 = 99th percentile) or a multiple of the Median Absolute Deviation of the signal outside the pick
windows. Default uses the MAD method.

Type
{“MAD”, “percentile”}

percentile_pick_threshold

Picks will only be made if the onset function exceeds this percentile of the noise level (amplitude of onset
function outside pick windows). (Default: 1.0)

Type
float, optional

mad_pick_threshold

Picks will only be made if the onset function exceeds its median value plus this multiple of the MAD
(calculated from the onset data outside the pick windows). (Default: 8)

Type
float, optional

4.3. Source code 81

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

plot_picks

Toggle plotting of phase picks.

Type
bool

pick_phases(event, lut, run)
Picks phase arrival times for located events by fitting a 1-D Gaussian function to the P and/or S onset
functions

DEFAULT_GAUSSIAN_FIT = {'PickValue': -1, 'popt': 0, 'xdata': 0, 'xdata_dt': 0}

property fraction_tt

Handler for deprecated attribute ‘fraction_tt’

pick_phases(event, lut, run)
Picks phase arrival times for located events.

Parameters
• event (Event object) – Light class encapsulating waveforms, coalescence infor-

mation and location information for a given event.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

• run (Run object) – Light class encapsulating i/o path information for a given run.

Returns
• event (Event object) – Event object provided to pick_phases(), but now with phase

picks!

• picks (pandas.DataFrame) – DataFrame that contains the measured picks with
columns: [“Name”, “Phase”, “ModelledTime”, “PickTime”, “PickError”, “SNR”]
Each row contains the phase pick from one station/phase.

property pick_threshold

Handler for deprecated attribute ‘pick_threshold’

plot(event, station, onset_data, picks_df, traveltimes, run)
Plot figure showing the filtered traces for each data component and the onset functions calculated from
them (P and/or S) for each station. The search window to make a phase pick is displayed, along with the
dynamic pick threshold, the phase pick time and its uncertainty (if made) and the Gaussian fit to the onset
function.

Parameters
• event (Event object) – Light class to encapsulate information about an event, in-

cluding origin time, location and waveform data.

• station (str) – Station name.

• onset_data (OnsetData object) – Light class encapsulating data generated dur-
ing onset calculation.

• picks_df (pandas.DataFrame object) – DataFrame that contains the measured
picks with columns: [“Name”, “Phase”, “ModelledTime”, “PickTime”, “PickEr-
ror”, “SNR”] Each row contains the phase pick from one station/phase.

• traveltimes (list of float) – Modelled traveltimes from the event hypocen-
tre to the station for each phase to be plotted.

82 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

• run (Run object) – Light class encapsulating i/o path information for a given run.

quakemigrate.signal.local_mag

The quakemigrate.local_mag extension module handles the calculation of local magnitudes from Wood-Anderson
simulated waveforms.

Warning: The local_mag modules are an ongoing work in progress. We hope to continue to extend their function-
ality, which may result in some API changes. If you have comments or suggestions, please contact the QuakeMigrate
developers at: quakemigrate.developers@gmail.com, or submit an issue on GitHub.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.signal.local_mag.local_mag

Module containing methods to calculate the local magnitude for an event located by QuakeMigrate.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.local_mag.LocalMag(amp_params, mag_params,
plot_amplitudes=True)

Bases: object

QuakeMigrate extension class for calculating local magnitudes.

Provides functions for measuring amplitudes of earthquake waveforms and using these to calculate local magni-
tudes.

Parameters
• amp_params (dict) – All keys are optional, including: signal_window : float

Length of S-wave signal window, in addition to the time window associated
with the marginal_window and traveltime uncertainty. (Default 0 s)

noise_window
[float] Length of the time window before the P-wave signal window in which to
measure the noise amplitude. (Default 10 s)

noise_measure
[{“RMS”, “STD”, “ENV”}] Method by which to measure the noise amplitude; root-
mean-quare, standard deviation or average amplitude of the envelope of the signal.
(Default “RMS”)

loc_method
[{“spline”, “gaussian”, “covariance”}] Which event location estimate to use. (De-
fault “spline”)

4.3. Source code 83

mailto:quakemigrate.developers@gmail.com
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

highpass_filter
[bool] Whether to apply a highpass filter to the data before measuring amplitudes.
(Default False)

highpass_freq
[float] High-pass filter frequency. Required if highpass_filter is True.

bandpass_filter
[bool] Whether to apply a band-pass filter before measuring amplitudes. (Default:
False)

bandpass_lowcut
[float] Band-pass filter low-cut frequency. Required if bandpass_filter is True.

bandpass_highcut
[float] Band-pass filter high-cut frequency. Required if bandpass_filter is True.

filter_corners
[int] Number of corners for the chosen filter. Default: 4.

prominence_multiplier
[float] To set a prominence filter in the peak-finding algorithm. (Default 0. = off).
NOTE: not recommended for use in combination with a filter; filter gain corrections
can lead to spurious results. Please see the scipy.signal.find_peaks documentation
for further guidance.

• mag_params (dict) – Required keys: A0 : str or func

Name of the attenuation function to use. Available options include {“Hutton-
Boore”, “keir2006”, “UK”, . . . }. Alternatively specify a function which re-
turns the attenuation factor at a specified (epicentral or hypocentral) distance.
(Default “Hutton-Boore”)

All other keys are optional, including: station_corrections : dict {str : float}

Dictionary of trace_id : magnitude-correction pairs. (Default None)

amp_feature
[{“S_amp”, “P_amp”}] Which phase amplitude measurement to use to calculate
local magnitude. (Default “S_amp”)

amp_multiplier
[float] Factor by which to multiply all measured amplitudes.

use_hyp_dist
[bool, optional] Whether to use the hypocentral distance instead of the epicentral
distance in the local magnitude calculation. (Default False)

trace_filter
[regex expression] Expression by which to select traces to use for the
mean_magnitude calculation. E.g. ‘.*H[NE]$’. (Default None)

station_filter
[list of str] List of stations to exclude from the mean_magnitude calculation. E.g.
[“KVE”, “LIND”]. (Default None)

dist_filter
[float or False] Whether to only use stations less than a specified (epicentral or
hypocentral) distance from an event in the mean_magnitude() calculation. Distance
in kilometres. (Default False)

84 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

pick_filter
[bool] Whether to only use stations where at least one phase was picked by the
autopicker in the mean_magnitude calculation. (Default False)

noise_filter
[float] Factor by which to multiply the measured noise amplitude before excluding
amplitude observations below the noise level. (Default 1.)

weighted_mean
[bool] Whether to do a weighted mean of the magnitudes when calculating the
mean_magnitude. (Default False)

• plot_amplitudes (bool, optional) – Plot amplitudes vs. distance plot for each
event. (Default True)

amp

The Amplitude object for this instance of LocalMag. Contains functions to measure Wood-Anderson
corrected displacement amplitudes for an event.

Type
Amplitude object

mag

The Magnitude object for this instance of LocalMag. Contains functions to calculate magnitudes from
Wood-Anderson corrected displacement amplitudes, and to combine them into a single magnitude estimate
for the event.

Type
Magnitude object

calc_magnitude(event, lut, run)

calc_magnitude(event, lut, run)
Wrapper function to calculate the local magnitude of an event by first making Wood-Anderson corrected
displacement amplitude measurements on each trace, then calculating magnitudes from these individual
measurements, and a network-averaged (weighted) mean magnitude estimate and associated uncertainty.

Additional functionality includes calculating an r^2 fit of the predicted amplitude with distance curve to
the observed amplitudes, and an associated plot of amplitudes vs. distance.

Parameters
• event (Event object) – Light class encapsulating waveform data, onset, pick and

location information for a given event.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

• run (Run object) – Light class encapsulating waveforms, coalescence information,
picks and location information for a given event.

Returns
• event (Event object) – Light class encapsulating waveforms, coalescence infor-

mation, picks and location information for a given event. Now also contains local
magnitude information.

• mag (float) – Network-averaged local magnitude estimate for this event.

4.3. Source code 85

QuakeMigrate, Release 1.0.2

quakemigrate.signal.local_mag.amplitude

Module containing methods to measure Wood-Anderson corrected waveform amplitudes to be used for local magnitude
calculation.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.amplitude.Amplitude(amplitude_params={})
Bases: object

Part of the QuakeMigrate LocalMag class; measures Wood-Anderson corrected waveform amplitudes to be used
for local magnitude calculation.

Simulates the Wood-Anderson waveforms using a user-supplied set of response removal parameters, then mea-
sures the maximum peak-to-trough amplitude in time windows around the P and S phase arrivals. These windows
are calculated from the phase pick times from the autopicker, if available, or from the modelled pick times. The
length of the S-wave signal window is calculated according to a user-specified signal_window parameter.

The user may optionally specify a filter to apply to the waveforms before amplitudes are measured, in order
(for example) to reduce the impact of high-amplitude noise associated with the oceanic microseisms on the
measurement of low-amplitude wavetrains associated with microseismic events. Note this will generally result
in an underestimate of the true earthquake waveform amplitude, even when the filter gain is corrected for.

A measurement of the signal amplitude in a window preceding the P-wave arrival is used to characterise the
“noise” amplitude. This can be used to filter out null observations, and to provide an estimate of the uncertainty
on the max amplitude measurements contributed by extraneous noise.

signal_window

Length of S-wave signal window, in addition to the time window associated with the marginal_window
and traveltime uncertainty. (Default 0 s)

Type
float

noise_window

Length of the time window before the P-wave signal window in which to measure the noise amplitude.
(Default 5 s)

Type
float

noise_measure

Method by which to measure the noise amplitude; root-mean-quare, standard deviation or average ampli-
tude of the envelope of the signal. (Default “RMS”)

Type
{“RMS”, “STD”, “ENV”}

loc_method

Which event location estimate to use. (Default “spline”)

Type
{“spline”, “gaussian”, “covariance”}

highpass_filter

Whether to apply a high-pass filter before measuring amplitudes. (Default False)

86 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Type
bool

highpass_freq

High-pass filter frequency. Required if highpass_filter is True.

Type
float

bandpass_filter

Whether to apply a band-pass filter before measuring amplitudes. (Default False)

Type
bool

bandpass_lowcut

Band-pass filter low-cut frequency. Required if bandpass_filter is True.

Type
float

bandpass_highcut

Band-pass filter high-cut frequency. Required if bandpass_filter is True.

Type
float

filter_corners

number of corners for the chosen filter. (Default 4)

Type
int

prominence_multiplier

To set a prominence filter in the peak-finding algorithm. (Default 0. = off) NOTE: not recommended
for use in combination with a filter; filter gain corrections can lead to spurious results. Please see the
scipy.signal.find_peaks documentation for further guidance.

Type
float

get_amplitudes(event, lut)

Raises
• AttributeError – If both highpass_filter and bandpass_filter are selected, or if the

user selects to apply a filter but does not provide the relevant frequencies.

• AttributeError – If response removal parameters are provided here instead of to the
Archive object.

get_amplitudes(event, lut)
Measure phase amplitudes for an event.

Parameters
• event (Event object) – Light class encapsulating waveforms, coalescence infor-

mation, picks and location information for a given event.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

4.3. Source code 87

QuakeMigrate, Release 1.0.2

Returns
amplitudes – P- and S-wave amplitude measurements for each component of each sta-
tion in the look-up table. Columns:

epi_dist
[float] Epicentral distance between the station and the event hypocentre.

z_dist
[float] Vertical distance between the station and the event hypocentre.

P_amp
[float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres. Corrected for filter gain, if applicable.

P_freq
[float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time interval of the max peak-to-trough
amplitude.

P_time
[obspy.UTCDateTime object] Approximate time of amplitude observation
(halfway between peak and trough times).

P_avg_amp
[float] Average amplitude in the P signal window, measured by the same
method as the Noise_amp (see noise_measure) and corrected for the same
filter gain as P_amp. In millimetres.

P_filter_gain
[float or NaN] Filter gain at P_freq - which has been corrected for in the
P_amp measurements - if a filter was applied prior to amplitude measure-
ment; Else NaN.

S_amp
[float] As for P, but in the S wave signal window.

S_freq
[float] As for P.

S_time
[obspy.UTCDateTime object] As for P.

S_avg_amp
[float] As for P.

S_filter_gain
[float or NaN.] As for P.

Noise_amp
[float] The average signal amplitude in the noise window. In millimetres.
See noise_measure parameter.

is_picked
[bool] Whether at least one of the phase arrivals was picked by the au-
topicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

Return type
pandas.DataFrame object

88 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

pad(marginal_window, max_tt, fraction_tt)
Calculate padding, including an allowance for the taper applied when filtering/ removing instrument re-
sponse, to ensure the noise and signal window amplitude measurements are not affected by the taper.

Parameters
• marginal_window (float) – Half-width of window centred on the maximum coa-

lescence time of the event over which the 4-D coalescence function is marginalised.
Used here as an estimate of the origin time uncertainity when calculating the signal
windows.

• max_tt (float) – Maximum traveltime in the look-up table.

• fraction_tt (float) – An estimate of the uncertainty in the velocity model as a
function of a fraction of the traveltime. (Default 0.1 == 10%)

Returns
• pre_pad (float) – Time window by which to pre-pad the data when reading from

the waveform archive.

• post_pad (float) – Time window by which to post-pad the data when reading from
the waveform archive.

quakemigrate.signal.local_mag.magnitude

Module that supplies functions to calculate magnitudes from observations of trace amplitudes, earthquake location,
station locations, and an estimated attenuation curve for the region of interest.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.magnitude.Magnitude(magnitude_params={})
Bases: object

Part of the QuakeMigrate LocalMag class; calculates local magnitudes from Wood-Anderson corrected wave-
form amplitude measurements.

Takes waveform amplitude measurements from the LocalMag Amplitude class, and from these calculates local
magnitude estimates using a local magnitude attenuation function. Magnitude corrections for individual stations
and channels thereof can be applied, if provided.

Individual estimates are then combined to calculate a network-averaged (weighted) mean local magnitude for
the event. Also includes the function to measure the r-squared statistic assessing the goodness of fit between the
predicted amplitude with distance from the nework-averaged local magnitude for the event and chosen attenuation
function, and the observed amplitudes. This, provides a tool to distinguish between real microseismic events and
artefacts.

A summary plot illustrating the amplitude observations, their uncertainties, and the predicted amplitude with
distance for the network-averaged local magnitude (and its uncertainties) can optionally be output.

A0

Name of the attenuation function to use. Available options include {“Hutton-Boore”, “keir2006”, “UK”,
. . . }. Alternatively specify a function which returns the attenuation factor at a specified (epicentral or
hypocentral) distance. (Default “Hutton-Boore”)

4.3. Source code 89

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

Type
str or func

use_hyp_dist

Whether to use the hypocentral distance instead of the epicentral distance in the local magnitude calcula-
tion. (Default False)

Type
bool, optional

amp_feature

Which phase amplitude measurement to use to calculate local magnitude. (Default “S_amp”)

Type
{“S_amp”, “P_amp”}

station_corrections

Dictionary of trace_id : magnitude-correction pairs. (Default None)

Type
dict {str : float}

amp_multiplier

Factor by which to multiply all measured amplitudes.

Type
float

weighted_mean

Whether to use a weighted mean to calculate the network-averaged local magnitude estimate for the event.
(Default False)

Type
bool

trace_filter

Expression by which to select traces to use for the mean_magnitude calculation. E.g. “.*H[NE]$” . (De-
fault None)

Type
regex expression

noise_filter

Factor by which to multiply the measured noise amplitude before excluding amplitude observations below
the noise level. (Default 1.)

Type
float

station_filter

List of stations to exclude from the mean_magnitude calculation. E.g. [“KVE”, “LIND”]. (Default None)

Type
list of str

dist_filter

Whether to only use stations less than a specified (epicentral or hypocentral) distance from an event in the
mean_magnitude() calculation. Distance in kilometres. (Default False)

Type
float or False

90 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

pick_filter

Whether to only use stations where at least one phase was picked by the autopicker in the mean_magnitude
calculation. (Default False)

Type
bool

r2_only_used

Whether to only use amplitude observations which were used for the mean magnitude calculation when
calculating the r-squared statistic for the goodness of fit between the measured and predicted amplitudes.
Default: True; False is an experimental feature - use with caution.

Type
bool

calculate_magnitudes(amplitudes)

mean_magnitude(magnitudes)

plot_amplitudes(event, run)

Raises
• TypeError – If the user does not specify an A0 attenuation curve.

• ValueError – If the user specifies an invalid A0 attenuation curve.

calculate_magnitudes(amplitudes)
Calculate magnitude estimates from amplitude measurements on individual stations /components.

Parameters
amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measurements for
each component of each station in the look-up table. Columns:

epi_dist
[float] Epicentral distance between the station and the event hypocentre.

z_dist
[float] Vertical distance between the station and the event hypocentre.

P_amp
[float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres. Corrected for filter gain, if applicable.

P_freq
[float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time interval of the max peak-to-trough
amplitude.

P_time
[obspy.UTCDateTime object] Approximate time of amplitude observation
(halfway between peak and trough times).

P_avg_amp
[float] Average amplitude in the P signal window, measured by the same
method as the Noise_amp (see noise_measure) and corrected for the same
filter gain as P_amp. In millimetres.

P_filter_gain
[float or NaN] Filter gain at P_freq - which has been corrected for in the
P_amp measurements - if a filter was applied prior to amplitude measure-
ment; Else NaN.

4.3. Source code 91

QuakeMigrate, Release 1.0.2

S_amp
[float] As for P, but in the S wave signal window.

S_freq
[float] As for P.

S_time
[obspy.UTCDateTime object] As for P.

S_avg_amp
[float] As for P.

S_filter_gain
[float or NaN.] As for P.

Noise_amp
[float] The average signal amplitude in the noise window. In millimetres.
See noise_measure parameter.

is_picked
[bool] Whether at least one of the phase arrivals was picked by the au-
topicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

Returns
magnitudes – The original amplitudes DataFrame, with columns containing the calcu-
lated magnitude and an associated error now added. Columns = [“epi_dist”, “z_dist”,
“P_amp”, “P_freq”, “P_time”,

”P_avg_amp”, “P_filter_gain”, “S_amp”, “S_freq”, “S_time”, “S_avg_amp”,
“S_filter_gain”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”]

Index = Trace ID (see obspy.Trace.id) Additional fields: ML : float

Magnitude calculated from the chosen amplitude measurement, using the spec-
ified attenuation curve and station_corrections.

ML_Err
[float] Estimate of the error on the calculated magnitude, based on potential errors in
the maximum amplitude measurement according to the measured noise amplitude.

Return type
pandas.DataFrame object

Raises
AttributeError – If A0 attenuation correction is not specified.

mean_magnitude(magnitudes)
Calculate the network-averaged local magnitude for an event based on the magnitude estimates calculated
from amplitude measurements made on each component of each station.

The user may specify distance, station, channel and a number of other filters to restrict which observations
are included in this best estimate of the local magnitude of the event.

Parameters
magnitudes (pandas.DataFrame object) – Contains P- and S-wave amplitude measure-
ments for each component of each station in the look-up table, and local magnitude esti-
mates calculated from them (output by calculate_magnitudes()). Note that the amplitude
observations are raw, but the ML estimates derived from them include station correc-
tions, if provided. Columns:

92 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

epi_dist
[float] Epicentral distance between the station and the event hypocentre.

z_dist
[float] Vertical distance between the station and the event hypocentre.

P_amp
[float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres. Corrected for filter gain, if applicable.

P_freq
[float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time interval of the max peak-to-trough
amplitude.

P_time
[obspy.UTCDateTime object] Approximate time of amplitude observation
(halfway between peak and trough times).

P_avg_amp
[float] Average amplitude in the P signal window, measured by the same
method as the Noise_amp (see noise_measure) and corrected for the same
filter gain as P_amp. In millimetres.

P_filter_gain
[float or NaN] Filter gain at P_freq - which has been corrected for in the
P_amp measurements - if a filter was applied prior to amplitude measure-
ment; Else NaN.

S_amp
[float] As for P, but in the S wave signal window.

S_freq
[float] As for P.

S_time
[obspy.UTCDateTime object] As for P.

S_avg_amp
[float] As for P.

S_filter_gain
[float or NaN.] As for P.

Noise_amp
[float] The average signal amplitude in the noise window. In millimetres.
See noise_measure parameter.

is_picked
[bool] Whether at least one of the phase arrivals was picked by the au-
topicker.

ML
[float] Magnitude calculated from the chosen amplitude measurement, us-
ing the specified attenuation curve and station_corrections.

ML_Err
[float] Estimate of the error on the calculated magnitude, based on potential
errors in the maximum amplitude measurement according to the measured
noise amplitude.

Index = Trace ID (see obspy.Trace object property ‘id’)

4.3. Source code 93

QuakeMigrate, Release 1.0.2

Returns
• mean_mag (float or NaN) – Network-averaged local magnitude estimate for the

event. Mean (or weighted mean) of the magnitude estimates calculated from each
individual channel after optionally removing some observations based on trace ID,
distance, etcetera.

• mean_mag_err (float or NaN) – Standard deviation (or weighted standard devi-
ation) of the magnitude estimates calculated from individual channels which con-
tributed to the calculation of the (weighted) mean magnitude.

• mag_r_squared (float or NaN) – r-squared statistic describing the fit of the ampli-
tude vs. distance curve predicted by the calculated mean_mag and chosen attenu-
ation model to the measured amplitude observations. This is intended to be used
to help discriminate between ‘real’ events, for which the predicted amplitude vs.
distance curve should provide a good fit to the observations, from artefacts, which
in general will not.

plot_amplitudes(magnitudes, event, run, unit_conversion_factor, noise_measure='RMS')
Plot a figure showing the measured amplitude with distance vs. predicted amplitude with distance derived
from mean_mag and the chosen attenuation model.

The amplitude observations (both for noise and signal amplitudes) are corrected according to the same
station corrections that were used in calculating the individual local magnitude estimates that were used
to calculate the network-averaged local magnitude for the event.

Parameters
• magnitudes (pandas.DataFrame object) – Contains P- and S-wave amplitude mea-

surements for each component of each station in the look-up table, and local mag-
nitude estimates calculated from them (output by calculate_magnitudes()). Note
that the amplitude observations are raw, but the ML estimates derived from them
include station corrections, if provided. Columns = [“epi_dist”, “z_dist”, “P_amp”,
“P_freq”, “P_time”, “P_avg_amp”,

”P_filter_gain”, “S_amp”, “S_freq”, “S_time”, “S_avg_amp”,
“S_filter_gain”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”,
“Noise_Filter”, “Trace_Filter”, “Station_Filter”, “Dist_Filter”, “Dist”,
“Used”]

• event (Event object) – Light class encapsulating waveforms, coalescence infor-
mation, picks and location information for a given event.

• run (Run object) – Light class encapsulating i/o path information for a given run.

• unit_conversion_factor (float) – A conversion factor based on the lookup
table grid projection, used to ensure the location uncertainties have units of kilo-
metres.

94 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

quakemigrate.signal.scan

Module to perform core QuakeMigrate functions: detect() and locate().

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.scan.QuakeScan(archive, lut, onset, run_path, run_name, **kwargs)
Bases: object

QuakeMigrate scanning class.

Provides an interface for the wrapped compiled C functions, used to perform the continuous scan (detect) or
refined event migrations (locate).

Parameters
• archive (Archive object) – Details the structure and location of a data archive and

provides methods for reading data from file.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

• onset (Onset object) – Provides callback methods for calculation of onset functions.

• run_path (str) – Points to the top level directory containing all input files, under which
the specific run directory will be created.

• run_name (str) – Name of the current QuakeMigrate run.

• kwargs (**dict) – See QuakeScan Attributes for details. In addition to these:
continuous_scanmseed_write

Option to continuously write the .scanmseed file output by detect() at the end of every time step. Default
behaviour is to write in day chunks where possible. Default: False.

Type
bool

cut_waveform_format

File format used when writing waveform data. We support any format also supported by ObsPy -
“MSEED” (default), “SAC”, “SEGY”, “GSE2”.

Type
str, optional

log

Toggle for logging. If True, will output to stdout and generate a log file. Default is to only output to stdout.

Type
bool, optional

loglevel

Toggle to set the logging level: “debug” will print out additional diagnostic information to the log and
stdout. (Default “info”)

Type
{“info”, “debug”}, optional

4.3. Source code 95

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

mags

Provides methods for calculating local magnitudes, performed during locate.

Type
LocalMag object, optional

marginal_window

Half-width of window centred on the maximum coalescence time. The 4-D coalescence functioned is
marginalised over time across this window such that the earthquake location and associated uncertainty
can be appropriately calculated. It should be an estimate of the time uncertainty in the earthquake origin
time, which itself is some combination of the expected spatial uncertainty and uncertainty in the seismic
velocity model used. Default: 2 seconds.

Type
float, optional

picker

Provides callback methods for phase picking, performed during locate.

Type
PhasePicker object, optional

plot_event_summary

Plot event summary figure - see quakemigrate.plot for more details. Default: True.

Type
bool, optional

plot_event_video

Plot coalescence video for each located earthquake. Default: False.

Type
bool, optional

post_pad

Additional amount of data to read in after the timestep, used to ensure the correct coalescence is calculated
at every sample.

Type
float

pre_pad

Additional amount of data to read in before the timestep, used to ensure the correct coalescence is calcu-
lated at every sample.

Type
float

real_waveform_units

Units to output real cut waveforms.

Type
{“displacement”, “velocity”}

run

Light class encapsulating i/o path information for a given run.

Type
Run object

96 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

scan_rate

Sampling rate at which the 4-D coalescence map will be calculated. Currently fixed to be the same as the
onset function sampling rate (not user-configurable).

Type
int, optional

threads

The number of threads for the C functions to use on the executing host. Default: 1 thread.

Type
int, optional

timestep

Length (in seconds) of timestep used in detect(). Note: total detect run duration should be divisible by
timestep. Increasing timestep will increase RAM usage during detect, but will slightly speed up overall
detect run. Default: 120 seconds.

Type
float, optional

wa_waveform_units

Units to output Wood-Anderson simulated cut waveforms.

Type
{“displacement”, “velocity”}

write_cut_waveforms

Write raw cut waveforms for all data read from the archive for each event located by locate(). See ~quakemi-
grate.io.data.Archive parameter read_all_stations. Default: False. NOTE: this data has not been processed
or quality-checked!

Type
bool, optional

write_real_waveforms

Write real cut waveforms for all data read from the archive for each event located by locate(). See ~quakem-
igrate.io.data.Archive parameter read_all_stations. Default: False. NOTE: the units of this data (dis-
placement or velocity) are controlled by real_waveform_units. NOTE: this data has not been processed or
quality-checked! NOTE: no padding has been added to take into account the taper applied during response
removal.

Type
bool, optional

write_wa_waveforms

Write Wood-Anderson simulated cut waveforms for all data read from the archive for each event located
by locate(). See ~quakemigrate.io.data.Archive parameter read_all_stations. Default: False. NOTE: the
units of this data (displacement or velocity) are controlled by wa_waveform_units. NOTE: this data has
not been processed or quality-checked! NOTE: no padding has been added to take into account the taper
applied during response removal.

Type
bool, optional

xy_files

Path to comma-separated value file (.csv) containing a series of coordinate files to plot. Columns: [“File”,
“Color”, “Linewidth”, “Linestyle”], where “File” is the absolute path to the file containing the coordinates
to be plotted. E.g: “/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain

4.3. Source code 97

QuakeMigrate, Release 1.0.2

coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with #
will be treated as a comment - this can be used to include references. See the Volcanotectonic_Iceland
example XY_files for a template.

Note: Do not include a header line in either file.

Type
str, optional

+++ TO BE REMOVED TO ARCHIVE CLASS +++

pre_cut

Specify how long before the event origin time to cut the waveform data from.

Type
float, optional

post_cut

Specify how long after the event origin time to cut the waveform. data to

Type
float, optional

+++ TO BE REMOVED TO ARCHIVE CLASS +++

detect(starttime, endtime)
Core detection method – compute decimated 3-D coalescence continuously throughout entire time period;
output as .scanmseed (in mSEED format).

locate(starttime, endtime) or locate(file)
Core locate method – compute 3-D coalescence over short time window around candidate earthquake
triggered from continuous detect output; output location & uncertainties (.event file), phase picks (.picks
file), plus multiple optional plots / data for further analysis and processing.

Raises
• OnsetTypeError – If an object is passed in through the onset argument that is not

derived from the Onset base class.

• PickerTypeError – If an object is passed in through the picker argument that is not
derived from the PhasePicker base class.

• RuntimeError – If the user does not supply the locate function with valid arguments.

• TimeSpanException – If the user supplies a starttime that is after the endtime.

detect(starttime, endtime)
Scans through data calculating coalescence in a (decimated) 3-D grid by continuously migrating onset
functions.

Parameters
• starttime (str) – Timestamp from which to run continuous scan.

• endtime (str) – Timestamp up to which to run continuous scan. Note: the last
sample returned will be that which immediately precedes this timestamp.

98 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

locate(starttime=None, endtime=None, trigger_file=None)
Re-computes the coalescence on an undecimated grid for a short time window around each candidate
earthquake triggered from the (decimated) continuous detect scan. Calculates event location and uncer-
tainties, makes phase arrival picks, plus multiple optional plotting / data outputs for further analysis and
processing.

Parameters
• starttime (str, optional) – Timestamp from which to include events in the

locate scan.

• endtime (str, optional) – Timestamp up to which to include events in the lo-
cate scan.

• trigger_file (str, optional) – File containing triggered events to be located.

property n_cores

Handler for deprecated attribute name ‘n_cores’

property sampling_rate

Get sampling_rate

property scan_rate

Get scan_rate

property time_step

Handler for deprecated attribute name ‘time_step’

quakemigrate.signal.trigger

Module to perform the trigger stage of QuakeMigrate.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.trigger.Trigger(lut, run_path, run_name, **kwargs)
Bases: object

QuakeMigrate triggering class.

Triggers candidate earthquakes from the continuous maximum coalescence through time data output by the
decimated detect scan, ready to be run through locate().

Parameters
• lut (LUT object) – Contains the traveltime lookup tables for the selected seismic phases,

computed for some pre-defined velocity model.

• run_path (str) – Points to the top level directory containing all input files, under which
the specific run directory will be created.

• run_name (str) – Name of the current QuakeMigrate run.

• kwargs (**dict) – See Trigger Attributes for details. In addition to these: log : bool,
optional

Toggle for logging. If True, will output to stdout and generate a log file. Default
is to only output to stdout.

4.3. Source code 99

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

loglevel
[{“info”, “debug”}, optional] Toggle to set the logging level: “debug” will print out
additional diagnostic information to the log and stdout. (Default “info”)

trigger_name
[str] Optional name of a sub-run - useful when testing different trigger parameters,
for example.

mad_window_length

Length of window within which to calculate the Median Average Deviation. Default: 3600 seconds (1
hour).

Type
float, optional

mad_multiplier

A scaling factor for the MAD output to make the calculated MAD factor a consistent estimation of the
standard deviation of the distribution. Default: 1.4826, which is the appropriate scaling factor for a normal
distribution.

Type
float, optional

marginal_window

Half-width of window centred on the maximum coalescence time. The 4-D coalescence functioned is
marginalised over time across this window such that the earthquake location and associated uncertainty
can be appropriately calculated. It should be an estimate of the time uncertainty in the earthquake origin
time, which itself is some combination of the expected spatial uncertainty and uncertainty in the seismic
velocity model used. Default: 2 seconds.

Type
float, optional

min_event_interval

Minimum time interval between triggered events. Must be at least twice the marginal window. Default: 4
seconds.

Type
float, optional

normalise_coalescence

If True, triggering is performed on the maximum coalescence normalised by the mean coalescence value
in the 3-D grid. Default: False.

Type
bool, optional

pad

Additional time padding to ensure events close to the starttime/endtime are not cut off and missed. Default:
120 seconds.

Type
float, optional

plot_trigger_summary

Plot triggering through time for each batched segment. Default: True.

Type
bool, optional

100 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

run

Light class encapsulating i/o path information for a given run.

Type
Run object

static_threshold

Static threshold value above which to trigger candidate events.

Type
float, optional

threshold_method

Toggle between a “static” threshold and a “dynamic” threshold, based on the Median Average Deviation.
Default: “static”.

Type
str, optional

xy_files

Path to comma-separated value file (.csv) containing a series of coordinate files to plot. Columns: [“File”,
“Color”, “Linewidth”, “Linestyle”], where “File” is the absolute path to the file containing the coordinates
to be plotted. E.g: “/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with #
will be treated as a comment - this can be used to include references. See the Volcanotectonic_Iceland
example XY_files for a template.

Note: Do not include a header line in either file.

Type
str, optional

plot_all_stns

If true, plot all stations used for detect. Otherwise, only plot stations which for which some data was
available during the trigger time window. NOTE: if no station availability data is found, all stations in the
LUT will be plotted. (Default: True)

Type
bool, optional

trigger(starttime, endtime, region=None, interactive_plot=False)
Trigger candidate earthquakes from decimated detect scan results.

Raises
• ValueError – If min_event_interval < 2 * marginal_window.

• InvalidTriggerThresholdMethodException – If an invalid threshold method is
passed in by the user.

• TimeSpanException – If the user supplies a starttime that is after the endtime.

property min_event_interval

Get and set the minimum event interval.

property minimum_repeat

Handler for deprecated attribute name ‘minimum_repeat’.

4.3. Source code 101

QuakeMigrate, Release 1.0.2

trigger(starttime, endtime, region=None, interactive_plot=False)
Trigger candidate earthquakes from decimated scan data.

Parameters
• starttime (str) – Timestamp from which to trigger events.

• endtime (str) – Timestamp up to which to trigger events.

• region (list of floats, optional) –

Only retain triggered events located within this region. Format is:
[Xmin, Ymin, Zmin, Xmax, Ymax, Zmax]

As longitude / latitude / depth (units corresponding to the lookup table grid projec-
tion; in positive-down frame).

• interactive_plot (bool, optional) – Toggles whether to produce an inter-
active plot. Default: False.

Raises
TimeSpanException – If starttime is after endtime.

quakemigrate.signal.trigger.chunks2trace(a, new_shape)
Create a trace filled with chunks of the same value.

Parameters:

a
[array-like] Array of chunks.

new_shape
[tuple of ints] (number of chunks, chunk_length).

Returns:

b
[array-like] Single array of values contained in a.

4.3.7 quakemigrate.util

Module that supplies various utility functions and classes.

copyright
2020–2023, QuakeMigrate developers.

license
GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

exception quakemigrate.util.ArchiveEmptyException

Bases: Exception

Custom exception to handle empty archive.

exception quakemigrate.util.ArchiveFormatException

Bases: Exception

Custom exception to handle case where Archive.format is not set.

102 Chapter 4. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.2

exception quakemigrate.util.ArchivePathStructureError(archive_format)
Bases: Exception

Custom exception to handle case where an invalid Archive path structure is selected.

exception quakemigrate.util.BadUpfactorException(trace)
Bases: Exception

Custom exception to handle case when the chosen upfactor does not create a trace with a sampling rate that can
be decimated to the target sampling rate.

exception quakemigrate.util.ChannelNameException(trace)
Bases: Exception

Custom exception to handle case when waveform data header has channel names which do not conform to the
IRIS SEED standard.

exception quakemigrate.util.DataAvailabilityException

Bases: Exception

Custom exception to handle case when all data for the selected stations did not pass the data quality criteria
specified by the user.

exception quakemigrate.util.DataGapException

Bases: Exception

Custom exception to handle case when no data is found for the selected stations for a given timestep.

class quakemigrate.util.DateFormatter(fmt, precision=3)
Bases: Formatter

Extend the matplotlib.ticker.Formatter class to allow for millisecond precision when formatting a tick (in days
since the epoch) with a datetime.datetime.strftime format string.

Parameters
• fmt (str) – datetime.datetime.strftime format string.

• precision (int) – Degree of precision to which to report sub-second time intervals.

exception quakemigrate.util.InvalidPickThresholdMethodException

Bases: Exception

Custom exception to handle case when the user has not selected a valid pick threshold method.

exception quakemigrate.util.InvalidTriggerThresholdMethodException

Bases: Exception

Custom exception to handle case when the user has not selected a valid trigger threshold method.

exception quakemigrate.util.InvalidVelocityModelHeader(key)
Bases: Exception

Custom exception to handle incorrect header columns in station file.

exception quakemigrate.util.LUTPhasesException(message)
Bases: Exception

Custom exception to handle the case when the look-up table does not contain the traveltimes for the phases
necessary for a given function.

4.3. Source code 103

QuakeMigrate, Release 1.0.2

exception quakemigrate.util.MagsTypeError

Bases: Exception

Custom exception to handle case when an object has been provided to calculate magnitudes during locate, but it
isn’t supported.

exception quakemigrate.util.NoOnsetPeak(pick_threshold)
Bases: Exception

Custom exception to handle case when no values in the onset function exceed the threshold used for picking.

exception quakemigrate.util.NoScanMseedDataException

Bases: Exception

Custom exception to handle case when no .scanmseed files can be found by read_coastream().

exception quakemigrate.util.NoStationAvailabilityDataException

Bases: Exception

Custom exception to handle case when no .StationAvailability files can be found by read_availability().

exception quakemigrate.util.NoTriggerFilesFound

Bases: Exception

Custom exception to handle case when no trigger files are found during locate. This can occur for one of two
reasons - an entirely invalid time period was used (i.e. one that does not overlap at all with a period of time for
which there exists TriggeredEvents.csv files) or an invalid run name was provided.

exception quakemigrate.util.NyquistException(freqmax, f_nyquist, tr_id)
Bases: Exception

Custom exception to handle the case where the specified filter has a lowpass corner above the signal Nyquist
frequency.

Parameters
• freqmax (float) – Specified lowpass frequency for filter.

• f_nyquist (float) – Nyquist frequency for the relevant waveform data.

• tr_id (str) – ID string for the Trace.

exception quakemigrate.util.OnsetTypeError

Bases: Exception

Custom exception to handle case when the onset object passed to QuakeScan is not of the default type defined
in QuakeMigrate.

exception quakemigrate.util.PeakToTroughError(err)
Bases: Exception

Custom exception to handle case when amplitude._peak_to_trough_amplitude encounters an anomalous set of
peaks and troughs, so can’t calculate an amplitude.

exception quakemigrate.util.PickOrderException(event_uid, station, p_pick, s_pick)
Bases: Exception

Custom exception to handle the case when the pick for the P phase is later than the pick for the S phase.

exception quakemigrate.util.PickerTypeError

Bases: Exception

Custom exception to handle case when the phase picker object passed to QuakeScan is not of the default type
defined in QuakeMigrate.

104 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

exception quakemigrate.util.ResponseNotFoundError(e, tr_id)
Bases: Exception

Custom exception to handle the case where the provided response inventory doesn’t contain the response infor-
mation for a trace.

Parameters
• e (str) – Error message from ObsPy Inventory.get_response().

• tr_id (str) – ID string for the Trace for which the response cannot be found.

exception quakemigrate.util.ResponseRemovalError(e, tr_id)
Bases: Exception

Custom exception to handle the case where the response removal was not successful.
Parameters

• e (str) – Error message from ObsPy Trace.remove_response() or Trace.simulate().

• tr_id (str) – ID string for the Trace for which the response cannot be removed.

exception quakemigrate.util.StationFileHeaderException

Bases: Exception

Custom exception to handle incorrect header columns in station file.

exception quakemigrate.util.TimeSpanException

Bases: Exception

Custom exception to handle case when the user has submitted a start time that is after the end time.

quakemigrate.util.calculate_mad(x, scale=1.4826)
Calculates the Median Absolute Deviation (MAD) of the input array x.

Parameters
• x (array-like) – Input data.

• scale (float, optional) – A scaling factor for the MAD output to make the calcu-
lated MAD factor a consistent estimation of the standard deviation of the distribution.

Returns
scaled_mad – Array of scaled mean absolute deviation values for the input array, x, scaled to
provide an estimation of the standard deviation of the distribution.

Return type
array-like

quakemigrate.util.decimate(trace, sampling_rate)
Decimate a trace to achieve the desired sampling rate, sr.

NOTE: data will be detrended and a cosine taper applied before decimation, in order to avoid edge effects when
applying the lowpass filter before decimating.

4.3. Source code 105

QuakeMigrate, Release 1.0.2

Parameters:

trace
[obspy.Trace object] Trace to be decimated.

sampling_rate
[int] Output sampling rate.

Returns:

trace
[obspy.Trace object] Decimated trace.

quakemigrate.util.gaussian_1d(x, a, b, c)
Create a 1-dimensional Gaussian function.

Parameters
• x (array-like) – Array of x values.

• a (float / int) – Amplitude (height of Gaussian).

• b (float / int) – Mean (centre of Gaussian).

• c (float / int) – Sigma (width of Gaussian).

Returns
f – 1-dimensional Gaussian function

Return type
function

quakemigrate.util.gaussian_3d(nx, ny, nz, sgm)

Create a 3-dimensional Gaussian function.
Parameters

• nx (array-like) – Array of x values.

• ny (array-like) – Array of y values.

• nz (array-like) – Array of z values.

• sgm (float / int) – Sigma (width of gaussian in all directions).

Returns
f – 3-dimensional Gaussian function

Return type
function

quakemigrate.util.logger(logstem, log, loglevel='info')
Simple logger that will output to both a log file and stdout.

Parameters
• logstem (str) – Filestem for log file.

• log (bool) – Toggle for logging - default is to only print information to stdout. If True,
will also create a log file.

• loglevel (str, optional) – Toggle for logging level - default is to print only “info”
messages to log. To print more detailed “debug” messages, set to “debug”.

106 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

quakemigrate.util.make_directories(run, subdir=None)
Make run directory, and optionally make subdirectories within it.

Parameters
• run (pathlib.Path object) – Location of parent output directory, named by run name.

• subdir (str, optional) – subdir to make beneath the run level.

quakemigrate.util.merge_stream(stream)

Merge all traces with contiguous data, or overlapping data which exactly matches (== st._cleanup(); i.e. no
clobber). Apply this on a channel by channel basis so that if any individual merge fails then only that channel
will be omitted.

Parameters
stream (obspy.Stream object) – Stream to be merged.

Returns
stream_merged – Merged Stream.

Return type
obpsy.Stream object

quakemigrate.util.pairwise(iterable)
Utility to iterate over an iterable pairwise.

quakemigrate.util.resample(stream, sampling_rate, resample, upfactor, starttime, endtime)
Resample data in an obspy.Stream object to the specified sampling rate.

By default, this function will only perform decimation of the data. If necessary, and if the user specifies resam-
ple = True and an upfactor to upsample by upfactor = int, data can also be upsampled and then, if necessary,
subsequently decimated to achieve the desired sampling rate.

For example, for raw input data sampled at a mix of 40, 50 and 100 Hz, to achieve a unified sampling rate of 50
Hz, the user would have to specify an upfactor of 5; 40 Hz x 5 = 200 Hz, which can then be decimated to 50 Hz.

NOTE: assumes any data with off-sample timing has been corrected with shift_to_sample(). If not, the
resulting traces may not all contain the correct number of samples.

NOTE: data will be detrended and a cosine taper applied before decimation, in order to avoid edge effects when
applying the lowpass filter.

Parameters
• stream (obspy.Stream object) – Contains list of obspy.Trace objects to be decimated /

resampled.

• resample (bool) – If true, perform resampling of data which cannot be decimated
directly to the desired sampling rate.

• upfactor (int or None) – Factor by which to upsample the data to enable it to be
decimated to the desired sampling rate, e.g. 40Hz -> 50Hz requires upfactor = 5.

Returns
stream – Contains list of resampled obspy.Trace objects at the chosen sampling rate sr.

Return type
obspy.Stream object

quakemigrate.util.shift_to_sample(stream, interpolate=False)
Check whether any data in an obspy.Stream object is “off-sample” - i.e. the data timestamps are not an integer
number of samples after midnight. If so, shift data to be “on-sample”.

This can either be done by shifting the timestamps by a sub-sample time interval, or interpolating the trace to
the “on-sample” timestamps. The latter has the benefit that it will not affect the timing of the data, but will

4.3. Source code 107

QuakeMigrate, Release 1.0.2

require additional computation time and some inevitable edge effects - though for onset calculation these should
be contained within the pad windows. If you are using a sampling rate < 10 Hz, contact the QuakeMigrate
developers.

Parameters
• stream (obspy.Stream object) – Contains list of obspy.Trace objects for which to check

the timing.

• interpolate (bool, optional) – Whether to interpolate the data to correct the “off-
sample” timing. Otherwise, the metadata will simply be altered to shift the timestamps
“on-sample”; this will lead to a sub-sample timing offset.

Returns
stream – Waveform data with all timestamps “on-sample”.

Return type
obspy.Stream object

quakemigrate.util.time2sample(time, sampling_rate)
Utility function to convert from seconds and sampling rate to number of samples.

Parameters
• time (float) – Time to convert.

• sampling_rate (int) – Sampling rate of input data/sampling rate at which to compute
the coalescence function.

Returns
out – Time that correpsonds to an integer number of samples at a specific sampling rate.

Return type
int

quakemigrate.util.timeit(*args_, **kwargs_)
Function wrapper that measures the time elapsed during its execution.

quakemigrate.util.trim2sample(time, sampling_rate)
Utility function to ensure time padding results in a time that is an integer number of samples.

Parameters
• time (float) – Time to trim.

• sampling_rate (int) – Sampling rate of input data/sampling rate at which to compute
the coalescence function.

Returns
out – Time that correpsonds to an integer number of samples at a specific sampling rate.

Return type
int

quakemigrate.util.upsample(trace, upfactor, starttime, endtime)
Upsample a data stream by a given factor, prior to decimation. The upsampling is carried out by linear interpo-
lation.

NOTE: assumes any data with off-sample timing has been corrected with shift_to_sample(). If not, the
resulting traces may not all contain the correct number of samples (and desired start and end times).

Parameters
• trace (obspy.Trace object) – Trace to be upsampled.

• upfactor (int) – Factor by which to upsample the data in trace.

108 Chapter 4. Contents:

QuakeMigrate, Release 1.0.2

Returns
out – Upsampled trace.

Return type
obpsy.Trace object

quakemigrate.util.wa_response(convert='DIS2DIS', obspy_def=True)
Generate a Wood Anderson response dictionary.

Parameters
• convert ({'DIS2DIS', 'VEL2VEL', 'VEL2DIS'}) – Type of output to convert between;

determines the number of complex zeros used.

• obspy_def (bool, optional) – Use the ObsPy definition of the Wood Anderson re-
sponse (Default). Otherwise, use the IRIS/SAC definition.

Returns
WOODANDERSON – Poles, zeros, sensitivity and gain of the Wood-Anderson torsion seis-
mograph.

Return type
dict

4.3. Source code 109

QuakeMigrate, Release 1.0.2

110 Chapter 4. Contents:

PYTHON MODULE INDEX

q
quakemigrate.core, 37
quakemigrate.core.lib, 38
quakemigrate.export, 39
quakemigrate.export.to_mfast, 39
quakemigrate.export.to_nlloc, 40
quakemigrate.export.to_obspy, 40
quakemigrate.export.to_snuffler, 41
quakemigrate.io, 41
quakemigrate.io.amplitudes, 42
quakemigrate.io.availability, 42
quakemigrate.io.core, 43
quakemigrate.io.cut_waveforms, 46
quakemigrate.io.data, 47
quakemigrate.io.event, 53
quakemigrate.io.scanmseed, 59
quakemigrate.io.triggered_events, 61
quakemigrate.lut, 62
quakemigrate.lut.create_lut, 62
quakemigrate.lut.lut, 64
quakemigrate.plot, 70
quakemigrate.plot.event, 71
quakemigrate.plot.phase_picks, 71
quakemigrate.plot.trigger, 72
quakemigrate.signal, 73
quakemigrate.signal.local_mag, 83
quakemigrate.signal.local_mag.amplitude, 86
quakemigrate.signal.local_mag.local_mag, 83
quakemigrate.signal.local_mag.magnitude, 89
quakemigrate.signal.onsets, 74
quakemigrate.signal.onsets.base, 74
quakemigrate.signal.onsets.stalta, 76
quakemigrate.signal.pickers, 80
quakemigrate.signal.pickers.base, 80
quakemigrate.signal.pickers.gaussian, 81
quakemigrate.signal.scan, 95
quakemigrate.signal.trigger, 99
quakemigrate.util, 102

111

QuakeMigrate, Release 1.0.2

112 Python Module Index

INDEX

A
A0 (quakemigrate.signal.local_mag.magnitude.Magnitude

attribute), 89
add_compute_output() (quakemigrate.io.event.Event

method), 55, 56
add_covariance_location() (quakemi-

grate.io.event.Event method), 55, 56
add_gaussian_location() (quakemi-

grate.io.event.Event method), 55, 56
add_local_magnitude() (quakemigrate.io.event.Event

method), 55, 56
add_picks() (quakemigrate.io.event.Event method), 55,

57
add_spline_location() (quakemigrate.io.event.Event

method), 55, 57
add_waveform_data() (quakemigrate.io.event.Event

method), 55, 57
all_channels (quakemi-

grate.signal.onsets.stalta.STALTAOnset at-
tribute), 77

allow_gaps (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 77

amp (quakemigrate.signal.local_mag.local_mag.LocalMag
attribute), 85

amp_feature (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 90

amp_multiplier (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 90

Amplitude (class in quakemi-
grate.signal.local_mag.amplitude), 86

append() (quakemigrate.io.scanmseed.ScanmSEED
method), 59, 60

Archive (class in quakemigrate.io.data), 47
archive_path (quakemigrate.io.data.Archive attribute),

47
ArchiveEmptyException, 102
ArchiveFormatException, 102
ArchivePathStructureError, 102

B
BadUpfactorException, 103
bandpass_filter (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 87

bandpass_filters (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 76

bandpass_highcut (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 87

bandpass_lowcut (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 87

C
calc_magnitude() (quakemi-

grate.signal.local_mag.local_mag.LocalMag
method), 85

calculate_mad() (in module quakemigrate.util), 105
calculate_magnitudes() (quakemi-

grate.signal.local_mag.magnitude.Magnitude
method), 91

calculate_onsets() (quakemi-
grate.signal.onsets.base.Onset method),
74

calculate_onsets() (quakemi-
grate.signal.onsets.stalta.STALTAOnset
method), 77

cell_count (quakemigrate.lut.lut.Grid3D property), 65
cell_size (quakemigrate.lut.lut.Grid3D property), 65
CentredSTALTAOnset (class in quakemi-

grate.signal.onsets.stalta), 76
channel_counts (quakemi-

grate.signal.onsets.stalta.STALTAOnset at-
tribute), 76

channel_maps (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 76

ChannelNameException, 103
check_availability() (quakemi-

grate.io.data.WaveformData method), 51

113

QuakeMigrate, Release 1.0.2

chunks2trace() (in module quakemi-
grate.signal.trigger), 102

ClassicSTALTAOnset (class in quakemi-
grate.signal.onsets.stalta), 76

coa_data (quakemigrate.io.event.Event attribute), 53
compute_traveltimes() (in module quakemi-

grate.lut.create_lut), 62
continuous_scanmseed_write (quakemi-

grate.signal.scan.QuakeScan attribute),
95

coord2grid() (quakemigrate.lut.lut.Grid3D method),
65

coord_proj (quakemigrate.lut.lut.Grid3D attribute), 64
cut_waveform_format (quakemi-

grate.signal.scan.QuakeScan attribute),
95

D
data (quakemigrate.io.event.Event attribute), 54
DataAvailabilityException, 103
DataGapException, 103
DateFormatter (class in quakemigrate.util), 103
decimate() (in module quakemigrate.util), 105
decimate() (quakemigrate.lut.lut.Grid3D method), 65,

66
DEFAULT_GAUSSIAN_FIT (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 82

detect() (quakemigrate.signal.scan.QuakeScan
method), 98

dist_filter (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 90

E
empty() (quakemigrate.io.scanmseed.ScanmSEED

method), 59, 60
endtime (quakemigrate.io.data.WaveformData at-

tribute), 50
Event (class in quakemigrate.io.event), 53
event_summary() (in module quakemigrate.plot.event),

71

F
filter_corners (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 87

find_max_coa() (in module quakemigrate.core.lib), 38
format (quakemigrate.io.data.Archive attribute), 48
fraction_tt (quakemigrate.lut.lut.LUT attribute), 68
fraction_tt (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
property), 82

full_timespan (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 77

G
gaussian_1d() (in module quakemigrate.util), 106
gaussian_3d() (in module quakemigrate.util), 106
gaussian_halfwidth() (quakemi-

grate.signal.onsets.base.Onset method),
75

gaussian_halfwidth() (quakemi-
grate.signal.onsets.stalta.STALTAOnset
method), 77, 78

GaussianPicker (class in quakemi-
grate.signal.pickers.gaussian), 81

get_amplitudes() (quakemi-
grate.signal.local_mag.amplitude.Amplitude
method), 87

get_grid_extent() (quakemigrate.lut.lut.Grid3D
method), 66

get_hypocentre() (quakemigrate.io.event.Event
method), 56, 57

get_loc_uncertainty() (quakemigrate.io.event.Event
method), 57

get_real_waveform() (quakemi-
grate.io.data.WaveformData method), 52

get_wa_waveform() (quakemi-
grate.io.data.WaveformData method), 51,
52

get_waveforms() (in module quakemi-
grate.io.cut_waveforms), 46

Grid3D (class in quakemigrate.lut.lut), 64
grid_corners (quakemigrate.lut.lut.Grid3D attribute),

64
grid_corners (quakemigrate.lut.lut.Grid3D property),

66
grid_extent (quakemigrate.lut.lut.Grid3D property),

66
grid_proj (quakemigrate.lut.lut.Grid3D attribute), 64
grid_xyz (quakemigrate.lut.lut.Grid3D attribute), 64
grid_xyz (quakemigrate.lut.lut.Grid3D property), 67

H
highpass_filter (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 86

highpass_freq (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 87

hypocentre (quakemigrate.io.event.Event attribute), 54
hypocentre (quakemigrate.io.event.Event property), 58

I
in_marginal_window() (quakemigrate.io.event.Event

114 Index

QuakeMigrate, Release 1.0.2

method), 55, 58
index2coord() (quakemigrate.lut.lut.Grid3D method),

65, 67
index2grid() (quakemigrate.lut.lut.Grid3D method),

65, 67
interpolate (quakemigrate.io.data.Archive attribute),

48
InvalidPickThresholdMethodException, 103
InvalidTriggerThresholdMethodException, 103
InvalidVelocityModelHeader, 103

L
ll_corner (quakemigrate.lut.lut.Grid3D attribute), 64
load() (quakemigrate.lut.lut.LUT method), 69
loc_method (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 86

loc_uncertainty (quakemigrate.io.event.Event prop-
erty), 58

local_magnitude (quakemigrate.io.event.Event prop-
erty), 58

LocalMag (class in quakemi-
grate.signal.local_mag.local_mag), 83

locate() (quakemigrate.signal.scan.QuakeScan
method), 98

locations (quakemigrate.io.event.Event attribute), 54
log (quakemigrate.signal.scan.QuakeScan attribute), 95
logger() (in module quakemigrate.util), 106
logger() (quakemigrate.io.core.Run method), 44
loglevel (quakemigrate.io.core.Run attribute), 44
loglevel (quakemigrate.signal.scan.QuakeScan at-

tribute), 95
LUT (class in quakemigrate.lut.lut), 67
LUTPhasesException, 103

M
mad_multiplier (quakemigrate.signal.trigger.Trigger

attribute), 100
mad_pick_threshold (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 81

mad_window_length (quakemi-
grate.signal.trigger.Trigger attribute), 100

mag (quakemigrate.signal.local_mag.local_mag.LocalMag
attribute), 85

Magnitude (class in quakemi-
grate.signal.local_mag.magnitude), 89

mags (quakemigrate.signal.scan.QuakeScan attribute), 95
MagsTypeError, 103
make_directories() (in module quakemigrate.util),

106
map4d (quakemigrate.io.event.Event attribute), 54
marginal_window (quakemi-

grate.signal.scan.QuakeScan attribute),

96
marginal_window (quakemigrate.signal.trigger.Trigger

attribute), 100
max_coalescence (quakemigrate.io.event.Event at-

tribute), 54
max_coalescence (quakemigrate.io.event.Event prop-

erty), 58
max_extent (quakemigrate.lut.lut.LUT property), 69
max_traveltime (quakemigrate.lut.lut.LUT attribute),

68
max_traveltime (quakemigrate.lut.lut.LUT property),

69
mean_magnitude() (quakemi-

grate.signal.local_mag.magnitude.Magnitude
method), 91, 92

merge_stream() (in module quakemigrate.util), 107
migrate() (in module quakemigrate.core.lib), 38
min_event_interval (quakemi-

grate.signal.trigger.Trigger attribute), 100
min_event_interval (quakemi-

grate.signal.trigger.Trigger property), 101
minimum_repeat (quakemigrate.signal.trigger.Trigger

property), 101
module

quakemigrate.core, 37
quakemigrate.core.lib, 38
quakemigrate.export, 39
quakemigrate.export.to_mfast, 39
quakemigrate.export.to_nlloc, 40
quakemigrate.export.to_obspy, 40
quakemigrate.export.to_snuffler, 41
quakemigrate.io, 41
quakemigrate.io.amplitudes, 42
quakemigrate.io.availability, 42
quakemigrate.io.core, 43
quakemigrate.io.cut_waveforms, 46
quakemigrate.io.data, 47
quakemigrate.io.event, 53
quakemigrate.io.scanmseed, 59
quakemigrate.io.triggered_events, 61
quakemigrate.lut, 62
quakemigrate.lut.create_lut, 62
quakemigrate.lut.lut, 64
quakemigrate.plot, 70
quakemigrate.plot.event, 71
quakemigrate.plot.phase_picks, 71
quakemigrate.plot.trigger, 72
quakemigrate.signal, 73
quakemigrate.signal.local_mag, 83
quakemigrate.signal.local_mag.amplitude,

86
quakemigrate.signal.local_mag.local_mag,

83

Index 115

QuakeMigrate, Release 1.0.2

quakemigrate.signal.local_mag.magnitude,
89

quakemigrate.signal.onsets, 74
quakemigrate.signal.onsets.base, 74
quakemigrate.signal.onsets.stalta, 76
quakemigrate.signal.pickers, 80
quakemigrate.signal.pickers.base, 80
quakemigrate.signal.pickers.gaussian, 81
quakemigrate.signal.scan, 95
quakemigrate.signal.trigger, 99
quakemigrate.util, 102

mw_times() (quakemigrate.io.event.Event method), 55,
58

N
n_cores (quakemigrate.signal.scan.QuakeScan prop-

erty), 99
name (quakemigrate.io.core.Run attribute), 43
name (quakemigrate.io.core.Run property), 44
nlloc_obs() (in module quakemigrate.export.to_nlloc),

40
node_count (quakemigrate.lut.lut.Grid3D attribute), 64
node_count (quakemigrate.lut.lut.Grid3D property), 67
node_spacing (quakemigrate.lut.lut.Grid3D attribute),

65
node_spacing (quakemigrate.lut.lut.Grid3D property),

67
noise_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 90

noise_measure (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 86

noise_window (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 86

NoOnsetPeak, 104
normalise_coalescence (quakemi-

grate.signal.trigger.Trigger attribute), 100
NoScanMseedDataException, 104
NoStationAvailabilityDataException, 104
NoTriggerFilesFound, 104
NyquistException, 104

O
Onset (class in quakemigrate.signal.onsets.base), 74
onset_centred (quakemi-

grate.signal.onsets.stalta.STALTAOnset prop-
erty), 78

onset_data (quakemigrate.io.event.Event attribute), 54
OnsetData (class in quakemigrate.signal.onsets.base),

75
OnsetTypeError, 104
otime (quakemigrate.io.event.Event attribute), 54

P
p_bp_filter (quakemi-

grate.signal.onsets.stalta.STALTAOnset prop-
erty), 78

p_onset_win (quakemi-
grate.signal.onsets.stalta.STALTAOnset prop-
erty), 78

pad (quakemigrate.signal.trigger.Trigger attribute), 100
pad() (quakemigrate.signal.local_mag.amplitude.Amplitude

method), 88
pad() (quakemigrate.signal.onsets.base.Onset method),

74, 75
pairwise() (in module quakemigrate.util), 107
path (quakemigrate.io.core.Run attribute), 43
path_structure() (quakemigrate.io.data.Archive

method), 49
PeakToTroughError, 104
percentile_pick_threshold (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 81

phase_picks (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
attribute), 81

PhasePicker (class in quakemi-
grate.signal.pickers.base), 80

phases (quakemigrate.lut.lut.LUT attribute), 68
phases (quakemigrate.signal.onsets.stalta.STALTAOnset

attribute), 76
pick_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 90

pick_phases() (quakemi-
grate.signal.pickers.base.PhasePicker method),
80

pick_phases() (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
method), 82

pick_summary() (in module quakemi-
grate.plot.phase_picks), 71

pick_threshold (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
property), 82

picker (quakemigrate.signal.scan.QuakeScan attribute),
96

PickerTypeError, 104
PickOrderException, 104
plot() (quakemigrate.lut.lut.LUT method), 69
plot() (quakemigrate.signal.pickers.base.PhasePicker

method), 80
plot() (quakemigrate.signal.pickers.gaussian.GaussianPicker

method), 82
plot_all_stns (quakemigrate.signal.trigger.Trigger at-

tribute), 101
plot_amplitudes() (quakemi-

116 Index

QuakeMigrate, Release 1.0.2

grate.signal.local_mag.magnitude.Magnitude
method), 91, 94

plot_event_summary (quakemi-
grate.signal.scan.QuakeScan attribute),
96

plot_event_video (quakemi-
grate.signal.scan.QuakeScan attribute),
96

plot_picks (quakemi-
grate.signal.pickers.base.PhasePicker at-
tribute), 80

plot_picks (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
attribute), 81

plot_trigger_summary (quakemi-
grate.signal.trigger.Trigger attribute), 100

position (quakemigrate.signal.onsets.stalta.STALTAOnset
attribute), 77

post_cut (quakemigrate.signal.scan.QuakeScan at-
tribute), 98

post_pad (quakemigrate.io.data.WaveformData at-
tribute), 51

post_pad (quakemigrate.signal.onsets.base.Onset
attribute), 74

post_pad (quakemigrate.signal.onsets.base.Onset prop-
erty), 75

post_pad (quakemigrate.signal.onsets.stalta.STALTAOnset
property), 78

post_pad (quakemigrate.signal.scan.QuakeScan at-
tribute), 96

pre_cut (quakemigrate.signal.scan.QuakeScan at-
tribute), 98

pre_filt (quakemigrate.io.data.Archive attribute), 48
pre_pad (quakemigrate.io.data.WaveformData at-

tribute), 51
pre_pad (quakemigrate.signal.onsets.base.Onset at-

tribute), 74
pre_pad (quakemigrate.signal.onsets.base.Onset prop-

erty), 75
pre_pad (quakemigrate.signal.onsets.stalta.STALTAOnset

property), 78
pre_pad (quakemigrate.signal.scan.QuakeScan at-

tribute), 96
pre_process() (in module quakemi-

grate.signal.onsets.stalta), 78
precision (quakemigrate.lut.lut.Grid3D attribute), 65
precision (quakemigrate.lut.lut.Grid3D property), 67
prominence_multiplier (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 87

Q
quakemigrate.core

module, 37

quakemigrate.core.lib
module, 38

quakemigrate.export
module, 39

quakemigrate.export.to_mfast
module, 39

quakemigrate.export.to_nlloc
module, 40

quakemigrate.export.to_obspy
module, 40

quakemigrate.export.to_snuffler
module, 41

quakemigrate.io
module, 41

quakemigrate.io.amplitudes
module, 42

quakemigrate.io.availability
module, 42

quakemigrate.io.core
module, 43

quakemigrate.io.cut_waveforms
module, 46

quakemigrate.io.data
module, 47

quakemigrate.io.event
module, 53

quakemigrate.io.scanmseed
module, 59

quakemigrate.io.triggered_events
module, 61

quakemigrate.lut
module, 62

quakemigrate.lut.create_lut
module, 62

quakemigrate.lut.lut
module, 64

quakemigrate.plot
module, 70

quakemigrate.plot.event
module, 71

quakemigrate.plot.phase_picks
module, 71

quakemigrate.plot.trigger
module, 72

quakemigrate.signal
module, 73

quakemigrate.signal.local_mag
module, 83

quakemigrate.signal.local_mag.amplitude
module, 86

quakemigrate.signal.local_mag.local_mag
module, 83

quakemigrate.signal.local_mag.magnitude
module, 89

Index 117

QuakeMigrate, Release 1.0.2

quakemigrate.signal.onsets
module, 74

quakemigrate.signal.onsets.base
module, 74

quakemigrate.signal.onsets.stalta
module, 76

quakemigrate.signal.pickers
module, 80

quakemigrate.signal.pickers.base
module, 80

quakemigrate.signal.pickers.gaussian
module, 81

quakemigrate.signal.scan
module, 95

quakemigrate.signal.trigger
module, 99

quakemigrate.util
module, 102

QuakeScan (class in quakemigrate.signal.scan), 95

R
r2_only_used (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 91

raw_waveforms (quakemigrate.io.data.WaveformData
attribute), 51

read_all_stations (quakemigrate.io.data.Archive at-
tribute), 48

read_all_stations (quakemi-
grate.io.data.WaveformData attribute), 51

read_availability() (in module quakemi-
grate.io.availability), 42

read_lut() (in module quakemigrate.io.core), 44
read_nlloc() (in module quakemigrate.lut.create_lut),

63
read_quakemigrate() (in module quakemi-

grate.export.to_obspy), 40
read_response_inv() (in module quakemi-

grate.io.core), 44
read_scanmseed() (in module quakemi-

grate.io.scanmseed), 61
read_stations() (in module quakemigrate.io.core), 44
read_triggered_events() (in module quakemi-

grate.io.triggered_events), 61
read_vmodel() (in module quakemigrate.io.core), 45
read_waveform_data() (quakemigrate.io.data.Archive

method), 49
real_waveform_units (quakemi-

grate.signal.scan.QuakeScan attribute),
96

remove_full_response (quakemigrate.io.data.Archive
attribute), 48

resample (quakemigrate.io.data.Archive attribute), 48
resample() (in module quakemigrate.util), 107

response_inv (quakemigrate.io.data.Archive attribute),
48

ResponseNotFoundError, 105
ResponseRemovalError, 105
Run (class in quakemigrate.io.core), 43
run (quakemigrate.signal.scan.QuakeScan attribute), 96
run (quakemigrate.signal.trigger.Trigger attribute), 100
run_path (quakemigrate.io.core.Run attribute), 43

S
s_bp_filter (quakemi-

grate.signal.onsets.stalta.STALTAOnset prop-
erty), 78

s_onset_win (quakemi-
grate.signal.onsets.stalta.STALTAOnset prop-
erty), 78

sac_mfast() (in module quakemigrate.export.to_mfast),
39

sampling_rate (quakemigrate.signal.onsets.base.Onset
attribute), 74

sampling_rate (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 77

sampling_rate (quakemigrate.signal.scan.QuakeScan
property), 99

save() (quakemigrate.lut.lut.LUT method), 69
scan_rate (quakemigrate.signal.scan.QuakeScan

attribute), 96
scan_rate (quakemigrate.signal.scan.QuakeScan prop-

erty), 99
ScanmSEED (class in quakemigrate.io.scanmseed), 59
serve_traveltimes() (quakemigrate.lut.lut.LUT

method), 68, 69
shift_to_sample() (in module quakemigrate.util), 107
signal_window (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 86

snuffler_markers() (in module quakemi-
grate.export.to_snuffler), 41

snuffler_stations() (in module quakemi-
grate.export.to_snuffler), 41

sta_lta_centred() (in module quakemi-
grate.signal.onsets.stalta), 79

sta_lta_windows (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 76

stage (quakemigrate.io.core.Run attribute), 43
STALTAOnset (class in quakemi-

grate.signal.onsets.stalta), 76
starttime (quakemigrate.io.data.WaveformData at-

tribute), 50
static_threshold (quakemi-

grate.signal.trigger.Trigger attribute), 101

118 Index

QuakeMigrate, Release 1.0.2

station_corrections (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 90

station_extent (quakemigrate.lut.lut.LUT property),
70

station_filter (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 90

StationFileHeaderException, 105
stations (quakemigrate.io.data.Archive attribute), 47
stations (quakemigrate.io.data.WaveformData at-

tribute), 50
stations() (in module quakemigrate.io.core), 45
stations_xyz (quakemigrate.lut.lut.LUT attribute), 68
stations_xyz (quakemigrate.lut.lut.LUT property), 70
stream (quakemigrate.io.scanmseed.ScanmSEED

attribute), 59
subname (quakemigrate.io.core.Run attribute), 43

T
threads (quakemigrate.signal.scan.QuakeScan at-

tribute), 97
threshold_method (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 81

threshold_method (quakemi-
grate.signal.trigger.Trigger attribute), 101

time2sample() (in module quakemigrate.util), 108
time_step (quakemigrate.signal.scan.QuakeScan prop-

erty), 99
timeit() (in module quakemigrate.util), 108
TimeSpanException, 105
timestep (quakemigrate.signal.scan.QuakeScan at-

tribute), 97
trace_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 90

traveltime_to() (quakemigrate.lut.lut.LUT method),
69, 70

traveltimes (quakemigrate.lut.lut.LUT attribute), 68
Trigger (class in quakemigrate.signal.trigger), 99
trigger() (quakemigrate.signal.trigger.Trigger

method), 101
trigger_info (quakemigrate.io.event.Event attribute),

55
trigger_summary() (in module quakemi-

grate.plot.trigger), 72
trigger_time (quakemigrate.io.event.Event attribute),

55
trim2sample() (in module quakemigrate.util), 108
trim2window() (quakemigrate.io.event.Event method),

55, 59

U
uid (quakemigrate.io.event.Event attribute), 55
unit_conversion_factor (quakemi-

grate.lut.lut.Grid3D attribute), 65
unit_conversion_factor (quakemi-

grate.lut.lut.Grid3D property), 67
unit_name (quakemigrate.lut.lut.Grid3D attribute), 65
unit_name (quakemigrate.lut.lut.Grid3D property), 67
update_lut() (in module quakemigrate.lut), 62
upfactor (quakemigrate.io.data.Archive attribute), 48
upsample() (in module quakemigrate.util), 108
ur_corner (quakemigrate.lut.lut.Grid3D attribute), 65
use_hyp_dist (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 90

V
velocity_model (quakemigrate.lut.lut.LUT attribute),

68

W
wa_response() (in module quakemigrate.util), 109
wa_waveform_units (quakemi-

grate.signal.scan.QuakeScan attribute),
97

water_level (quakemigrate.io.data.Archive attribute),
48

WaveformData (class in quakemigrate.io.data), 49
waveforms (quakemigrate.io.data.WaveformData at-

tribute), 51
weighted_mean (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 90

write() (quakemigrate.io.event.Event method), 56, 59
write() (quakemigrate.io.scanmseed.ScanmSEED

method), 60
write() (quakemigrate.signal.pickers.base.PhasePicker

method), 80
write_amplitudes() (in module quakemi-

grate.io.amplitudes), 42
write_availability() (in module quakemi-

grate.io.availability), 42
write_cut_waveforms (quakemi-

grate.signal.scan.QuakeScan attribute),
97

write_cut_waveforms() (in module quakemi-
grate.io.cut_waveforms), 46

write_real_waveforms (quakemi-
grate.signal.scan.QuakeScan attribute),
97

write_triggered_events() (in module quakemi-
grate.io.triggered_events), 61

write_wa_waveforms (quakemi-
grate.signal.scan.QuakeScan attribute),

Index 119

QuakeMigrate, Release 1.0.2

97
write_waveforms() (in module quakemi-

grate.io.cut_waveforms), 46
written (quakemigrate.io.scanmseed.ScanmSEED at-

tribute), 59

X
xy_files (quakemigrate.signal.scan.QuakeScan at-

tribute), 97
xy_files (quakemigrate.signal.trigger.Trigger at-

tribute), 101

120 Index

	Citation
	Contact
	License
	Contents:
	Installation
	Supported operating systems
	Prerequisites
	Installation via pip
	Installing a traveltime solver
	NonLinLoc
	Obtaining binaries
	Adding to the system path

	scikit-fmm

	Other installation methods
	From source
	conda install

	Testing your installation
	C compilers
	Checking for a C compiler
	Linux
	macOS
	OpenMP on macOS
	conda
	brew
	Legacy: brew gcc

	Windows

	Notes
	PROJ
	matplotlib backends

	Tutorials
	Reading waveform archives
	The Archive class
	Specifying the archive structure
	Resampling waveforms
	Instrument response
	Rejection criteria
	Gap tolerance
	Flatlines
	Overlaps

	Traveltime lookup tables
	Defining the underlying 3-D grid
	Coordinate projections
	Geographical location and spatial extent
	Bundling the grid specification

	Computing traveltimes
	Station files
	Homogeneous velocity model
	1-D velocity models
	1-D fast-marching method
	1-D NonLinLoc Grid2Time Eikonal solver

	Other formats

	Saving your LUT
	Reading in a saved LUT
	Decimating a LUT

	Detect
	Before you start
	Decimation of the LUT
	Using an Onset Function
	Deciding your Onset Function
	Defining a good filter
	Window lengths

	Detect parameters
	Starting your Detect run
	Common Errors
	ArchiveEmptyException

	Understanding the output from detect
	Station availability
	Logfile
	Scanmseed object

	The trigger stage
	Before you start
	Initialising the Trigger object
	Choosing a detection threshold
	Static Threshold
	Dynamic Threshold

	Running Trigger
	Understanding the trigger output
	Event trigger file
	Trigger summary figure

	Source code
	quakemigrate.core
	Functions

	quakemigrate.export
	quakemigrate.export.to_mfast
	quakemigrate.export.to_nlloc
	quakemigrate.export.to_obspy
	quakemigrate.export.to_snuffler

	quakemigrate.io
	quakemigrate.io.amplitudes
	quakemigrate.io.availability
	quakemigrate.io.core
	quakemigrate.io.cut_waveforms
	quakemigrate.io.data
	quakemigrate.io.event
	quakemigrate.io.scanmseed
	quakemigrate.io.triggered_events

	quakemigrate.lut
	quakemigrate.lut.create_lut
	quakemigrate.lut.lut

	quakemigrate.plot
	quakemigrate.plot.event
	quakemigrate.plot.phase_picks
	quakemigrate.plot.trigger

	quakemigrate.signal
	Subpackages
	quakemigrate.signal.onsets
	quakemigrate.signal.onsets.base
	quakemigrate.signal.onsets.stalta

	quakemigrate.signal.pickers
	quakemigrate.signal.pickers.base
	quakemigrate.signal.pickers.gaussian

	quakemigrate.signal.local_mag
	quakemigrate.signal.local_mag.local_mag
	quakemigrate.signal.local_mag.amplitude
	quakemigrate.signal.local_mag.magnitude

	quakemigrate.signal.scan
	quakemigrate.signal.trigger
	Parameters:
	Returns:

	quakemigrate.util
	Parameters:
	Returns:

	Python Module Index
	Index

