
QuakeMigrate
Release 1.0.0

Nov 09, 2020

Contents

1 Supported operating systems 3

2 Citation 5

3 Contact 7

4 License 9

5 Contents: 11

Python Module Index 71

Index 73

i

ii

QuakeMigrate, Release 1.0.0

QuakeMigrate is a Python package for the detection and location of earthquakes using waveform migration and
stacking.

QuakeMigrate uses a waveform stacking algorithm to search for coherent seismic phase arrivals across a network of
instruments. It produces, from raw data, a catalogue of earthquakes with locations, origin times and phase arrival
picks, as well as estimates of the uncertainties associated with these measurements.

The source code for the project is hosted on .

This package is written by the QuakeMigrate developers, and is distributed under the GPLv3 License, Copyright
QuakeMigrate developers 2020.

Contents 1

QuakeMigrate, Release 1.0.0

2 Contents

CHAPTER 1

Supported operating systems

QuakeMigrate was developed and tested on Ubuntu 16.04/18.04, with the intention of being “platform agnostic”. As
of July 2020, the package has been successfully built and run on:

• Ubuntu 16.04/18.04/20.04

• Red Hat Enterprise Linux

• Windows 10

• macOSX High Sierra 10.13.6

3

QuakeMigrate, Release 1.0.0

4 Chapter 1. Supported operating systems

CHAPTER 2

Citation

If you use this package in your work, please cite the following paper:

Bacon, C.A., Smith, J.D., Winder, T., Hudson, T., Greenfield, T. and White, R.S. QuakeMigrate: a Modular, Open-
Source Python Package for Earthquake Detection and Location. In AGU Fall Meeting 2019. AGU.

or, if this is not possible, please cite the following journal article:

Smith, J.D., White, R.S., Avouac, JP, and S. Bourne (2020), Probabilistic earthquake locations of induced seismicity
in the Groningen region, Netherlands, Geophysical Journal International.

We hope to have a publication coming out soon:

Winder, T., Smith, J.D., Bacon, C.A., Hudson, T.S., Drew, J., Greenfield, T. and White, R.S. QuakeMigrate: a Python
Package for Automatic Earthquake Detection and Location Using Waveform Migration and Stacking. Seismological
Research Letters.

5

QuakeMigrate, Release 1.0.0

6 Chapter 2. Citation

CHAPTER 3

Contact

You can contact us directly at - quakemigrate.developers@gmail.com

Any additional comments/questions can be directed to: * Tom Winder - tom.winder@esc.cam.ac.uk * Conor Bacon
- conor.bacon@esc.cam.ac.uk

7

mailto:quakemigrate.developers@gmail.com
mailto:tom.winder@esc.cam.ac.uk
mailto:conor.bacon@esc.cam.ac.uk

QuakeMigrate, Release 1.0.0

8 Chapter 3. Contact

CHAPTER 4

License

This package is written and maintained by the QuakeMigrate developers, Copyright QuakeMigrate developers 2020.
It is distributed under the GPLv3 License. Please see the [here](https://www.gnu.org/licenses/gpl-3.0.html) for a
complete description of the rights and freedoms that this provides the user.

9

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

10 Chapter 4. License

CHAPTER 5

Contents:

5.1 Installation

QuakeMigrate is a predominantly Python package with some routines written and optimised in C. These are built
and linked to QuakeMigrate at installation, which means you will need to ensure that there is a suitable compiler
available (more details below).

5.1.1 Supported operating systems

QuakeMigrate was developed and tested on Ubuntu 16.04/18.04, with the intention of being “platform agnostic”. As
of July 2020, the package has been successfully built and run on:

• Ubuntu 16.04/18.04/20.04

• Red Hat Enterprise Linux

• Debian

• Windows 10

• macOSX High Sierra 10.13.6

5.1.2 Prerequisites

QuakeMigrate supports Python 3.6 or newer (3.7/3.8). We recommend using Anaconda as a package manager and
environment management system to isolate and install the specific dependencies of QuakeMigrate. Instructions for
downloading and installing Anaconda can be found here. If drive space is limited, consider using Miniconda instead,
which ships with a minimal collection of useful packages.

Setting up an environment

Using conda, you can use our quakemigrate.yml file to create and activate a minimally complete environment:

11

https://docs.anaconda.com/anaconda/install/

QuakeMigrate, Release 1.0.0

conda env create -f quakemigrate.yml
conda activate quakemigrate

This will install the explicit dependencies of QuakeMigrate (as well as some additional sub-dependencies/useful pack-
ages). The full list of dependencies (and versions, where relevant) is:

• matplotlib < 3.3

• numpy

• obspy >= 1.2

• pandas >= 1 and < 1.1

• pyproj >= 2.6

• scipy

Note: These version pins are subject to change. We defer to ObsPy to select suitable versions for NumPy/SciPy.

Warning: Some changes to datetime handling were introduced in matplotlib 3.3, which caused some conflicts
with pandas versions <= 1.0.5. A patch was applied, but for the time being we have pinned these two packages
until we find time to fully resolve the issues arising from these changes.

In addition, we use NonLinLoc and scikit fmm as backends for producing 1-D traveltime lookup tables.

NonLinLoc

To download, unpack, and compile NonLinLoc, you can use:

curl http://alomax.free.fr/nlloc/soft7.00/tar/NLL7.00_src.tgz -o NLL7.00_src.tgz
tar -xzvf NLL7.00_src.tgz
cd src
mkdir bin; export MYBIN=./bin
make -R all

Once the source code has been compiled, we recommend you add the bin to your system path. For Unix systems, this
can be done by adding the following to your .bashrc file (typically found in your home directory, ~/):

export PATH=/path/to/nonlinloc/bin:$PATH

replacing the /path/to/nonlinloc with the path to where you downloaded/installed NonLinLoc. Save your
.bashrc and open a new terminal window to activate the change. This will allow your shell to access the Vel2Grid
and Grid2Time programs anywhere.

scikit-fmm

scikit-fmm is a 3rd-party package which implements the fast-marching method. We specify the version 2019.1.30
as previous versions did not catch a potential numerical instability which may lead to unphysical traveltimes. It can be
installed using:

pip install scikit-fmm==2019.1.30

12 Chapter 5. Contents:

http://alomax.free.fr/nlloc/
https://pythonhosted.org/scikit-fmm/

QuakeMigrate, Release 1.0.0

It can also be installed along with the rest of package (detailed below).

Note: In order to install scikit-fmm, you will need an accessible C++ compiler, such as gxx (see below for details).

C compilers

In order to install and use QuakeMigrate, you will need a C compiler that will build the migration extension library.

If you already have a suitable compiler (e.g. gcc, MSVC) at the OS level, then you can proceed to the Installing
section.

If you do not, or to be sure, we recommend installing a compiler using conda. Instructions for doing this on Linux and
macOSX operating systems are given below.

Note: In order to build the (optional) dependency scikit-fmm you will need a C++ compiler (e.g. gxx, MSVC). This
can also be done either at the OS level, or using conda (see guidance on the conda compiler tools page, linked below).

Linux

We recommend installing the GNU compiler collection (GCC, which previously stood for the GNU C Compiler)
through conda.

conda install gcc_linux-64

It is generally useful to install compilers at the OS level, including a C++ compiler (e.g. gxx), which is required to
build the scikit-fmm package.

Once installed, you can proceed with the QuakeMigrate installation.

macOS

As with Linux, we recommend installing GCC through conda.

conda install gcc

Note: We have not yet tested compiling and/or running QuakeMigrate against the Clang compiler.

Installation of compilers at an OS level can be done using Homebrew, a package manager for macOS. It is then as
simple as:

brew install gcc

Once installed, you can proceed with the QuakeMigrate installation.

Windows

Compilation and linking of the C extensions has been successful using the Microsoft Visual C++ (MSVC) build tools.
We strongly recommend that you download and install these tools in order to use QuakeMigrate. You can either install

5.1. Installation 13

https://docs.conda.io/projects/conda-build/en/latest/resources/compiler-tools.html
https://brew.sh/

QuakeMigrate, Release 1.0.0

Visual Studio in its entirety, or just the Build Tools - available here. You will need to restart your computer once the
installation process has completed. We recommend using the anaconda command line interface (unix shell-like) to
install QuakeMigrate over command prompt.

Warning: QuakeMigrate has been tested and validated on Windows, but there may yet remain some unknown
issues. If you encounter an issue (and/or resolve it), please let us know!

Once installed, you can proceed with the QuakeMigrate installation.

5.1.3 Installing

There are a few ways to get a copy of QuakeMigrate:

From source

Clone the repository from our GitHub (note: you will need git installed on your system), or alternatively down-
load the source code directly through the GitHub web interface. Once you have a local copy, navigate to the new
QuakeMigrate directory and run (ensuring your environment is activated):

pip install .

You can optionally pass a -e argument to install the package in ‘editable’ mode.

If you wish to use scikit-fmm, you can install it here as an optional package using:

pip install .[fmm]

You should now be able to import quakemigrate within a Python session:

python
>>> import quakemigrate

pip install

We will be linking the package to PyPI (the Python Package Index) soon, after which you will be able to use the
following command to install the package:

pip install quakemigrate

conda install

We hope to link the package with the conda forge soon, after which you will be able to use the following command to
install the package:

conda install -c conda-forge quakemigrate

14 Chapter 5. Contents:

https://visualstudio.microsoft.com/downloads/
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/QuakeMigrate/quakemigrate

QuakeMigrate, Release 1.0.0

5.1.4 Testing your installation

In order to test your installation, you will need to have cloned the GitHub repository. This will ensure you have all
of the required benchmarked data (which is not included in pip/conda installs). Then, navigate to QuakeMigrate/
examples/Icequake_Iceland and run the example scripts in the following order:

python iceland_lut.py
python iceland_detect.py
python iceland_trigger.py
python iceland_locate.py

Once these have all run successfully, navigate to QuakeMigrate/tests and run:

python test_benchmarks.py

This should execute with no failed tests.

Note: We hope to work this into a more complete suite of tests that can be run in a more automated sense.

5.1.5 Notes

There is a known issue with PROJ version 6.2.0 which causes vertical coordinates to be incorrectly transformed when
using units other than metres (the PROJ default). If you encounter this issue (you will get an ImportError when
trying to use the lut subpackage), you should update pyproj. Using conda will install an up-to-date PROJ backend,
but you may need to clear your cache of downloaded packages. This can be done using:

conda clean --all

Then reinstall pyproj:

conda uninstall pyproj
conda install pyproj

5.2 Tutorials

Here we provide a few tutorials that explore each element of the package in more detail and provide code snippets the
user can use in their own research.

5.2.1 The traveltime lookup table

This tutorial will cover the basic ideas and definitions underpinning the traveltime lookup table, as well as showing
how they can be created.

In order to reduce computational costs during runtime, we pre-compute traveltime lookup tables (LUTs) for each
seismic phase and each station in the network to every node in a regularised 3-D grid. This grid spans the volume of
interest, herein termed the coalescence volume, within which QuakeMigrate will search for events.

5.2. Tutorials 15

QuakeMigrate, Release 1.0.0

Defining the underlying 3-D grid

Before we can create our traveltime lookup table, we have to define the underlying 3-D grid which spans the volume
of interest.

Coordinate projections

First, we choose a pair of coordinate reference systems to represent the input coordinate space (cproj) and the
Cartesian grid space (gproj). We do this using pyproj, which provides the Python bindings for the PROJ library. It
is important to think about which projection is best suited to your particular study region. More information can be
found [in their documentation](https://pyproj4.github.io/pyproj/stable/).

Warning: The default units of Proj are metres! It is strongly advised that you explicitly state which units you
wish to use.

We use here the WGS84 reference ellipsoid (used as standard by the Global Positioning System) as our input space and
the Lambert Conformal Conic projection to form our Cartesian space. The units of the Cartesian space are specified
as kilometres. The values used in the LCC projection are for a study region in Sabah, Borneo.

from pyproj import Proj

cproj = Proj(proj="longlat", ellps="WGS84", datum"=WGS84", no_defs=True)
gproj = Proj(proj="lcc", lon_0=116.75, lat_0=6.25, lat_1=4.0, lat_2=7.5,

datum="WGS84", ellps="WGS84", units="km", no_defs=True)

Geographical location and spatial extent

In order to geographically situate our lookup table, we choose two reference points in the input coordinate space,
herein called the lower-left and upper-right corners (ll_corner and ur_corner, respectively). By default, we
work in a depth-positive frame (i.e. positive-down or left-handed coordinate system) and use units of kilometres. It is
possible to run QuakeMigrate with distances measured in metres, as long as the user specifies this requirement when
defining the grid projection and all inputs (station elevations, grid specification, velocities, etc) are in metres.

This schematic shows the relative positioning of the two corners:

16 Chapter 5. Contents:

https://pyproj4.github.io/pyproj/stable/

QuakeMigrate, Release 1.0.0

The final piece of information required to fully define the grid on which we will compute traveltimes is the spacing (in
each dimension, x, y, z) between each node in the grid (node_spacing). The LUT class will automatically find the
number of nodes required in each dimension to span the specified geographical region. If the node spacing doesn’t fit
into the corresponding grid dimension an integer number of times, the location of the upper-right corner is shifted to
accommodate an additional node.

Note: The corners (ll_corner and ur_corner) are nodes - hence a grid that is 20 x 20 x 20 km, with 2 km node
spacing in each dimension, will have 11 nodes in x, y, and z.

ll_corner = [116.075, 5.573, -1.750]
ur_corner = [117.426, 6.925, 27.750]
node_spacing = [0.5, 0.5, 0.5]

Bundling the grid specification

The grid specification needs to be bundled into a dictionary to be used as an input for the compute_traveltimes function.
We use here the AttribDict from ObsPy, which extends the standard Python dict data structure to also have .-style
access.

grid_spec = AttribDict()
grid_spec.ll_corner = ll_corner
grid_spec.ur_corner = ur_corner
grid_spec.node_spacing = node_spacing
grid_spec.grid_proj = gproj
grid_spec.coord_proj = cproj

Computing traveltimes

We have bundled a few methods of computing traveltimes into QuakeMigrate.

In addition to the grid specification, we need to provide a list of stations for which to compute traveltime tables.

5.2. Tutorials 17

QuakeMigrate, Release 1.0.0

from quakemigrate.io import read_stations

stations = read_stations("/path/to/station_file")

The read_stations function is a passthrough for pandas.read_csv, so we can handle any delimiting characters (e.g.
by specifying read_stations(“station_file”, delimiter=”,”)). There are four required (case-sensitive) column headers -
“Name”, “Longitude”, “Latitude”, “Elevation”.

Note: Station elevations are in the positive-up/right-handed coordinate frame. An elevation of 2 would correspond to
2 (km) above sea level.

The compute_traveltimes function used in the following sections returns a lookup table (a fully-populated instance of
the LUT class) which can be used for detect, trigger, and locate.

Homogeneous velocity model

Simply calculates the straight line traveltimes between stations and points in the grid. It is possible to use stations that
are outside the specified span of the grid if desired. For example, if you have a good prior constraint on the possible
location of the seismicity you are hoping to detect; for basal icequakes you may limit the LUT grid to span a small
range of depths around the ice-bed interface. Any reduction in grid size can greatly reduce the computational cost of
running QuakeMigrate, as runtime scales with the number of nodes - so n^3 for an equidimensional lookup table grid
of side-length n.

from quakemigrate.lut import compute_traveltimes

compute_traveltimes(grid_spec, stations, method="homogeneous", vp=5., vs=3.,
log=True, save_file=/path/to/save_file)

1-D velocity models

1-D velocity models are read in from an (arbitrarily delimited) textfile using quakemigrate.io.read_vmodel. There
is only 1 required (case-sensitive) column header - “Depth”, which corresponds to the depths for each block in the
velocity model. Each additional column should contain a velocity model that corresponds to a particular seismic phase,
with a (case-sensitive) header, e.g. Vp (Note: Uppercase V, lowercase phase code).

Note: The units for velocities should correspond to the units used in specifying the grid projection. km -> km / s; m
-> m / s.

Note: Depths are in the positive-down/left-handed coordinate frame. A depth of 5 would correspond to 5 (km) below
sea level.

1-D fast-marching method

The fast-marching method implicitly tracks the evolution of the wavefront. Our current backend is the scikit-fmm
package. It is possible to use this package to compute traveltimes to 1-D, 2-D, or 3-D velocity models. Currently we
provide a utility function that computes traveltime tables for 1-D velocity models. The format of this velocity model
file is specified below. See the scikit-fmm documentation and Rawlinson & Sambridge (2005) for more details.

18 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Note: Traveltime calculation can only be performed between grid nodes: the station location is therefore taken as the
closest grid node. Note that for large node spacings this may cause a modest error in the calculated traveltimes.

Note: All stations must be situated within the grid on which traveltimes are to be computed.

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(grid_spec, stations, method="1dfmm", vmod=vmod,

log=True, save_file=/path/to/save_file)

1-D NonLinLoc-style sweep

Uses the Eikonal solver from NonLinLoc under the hood to generate a traveltime grid for a 2-D slice that passes
through the station and the point in the grid furthest away from that station. This slice is then “swept” using a bilinear
interpolation scheme to produce a 3-D traveltime grid. The format of the input velocity model file is specified below.
This also has the benefit of being able to include stations outside of the volume of interest, without having to increase
the size of the grid.

Note: Requires the user to install the NonLinLoc software package (available from http://alomax.free.fr/nlloc/)

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(grid_spec, stations, method="1dsweep", vmod=vmod,

block_model=True, log=True, save_file=/path/to/save_file)

Other formats

It is also easy to import traveltime lookup tables generated by other means. We have provided a parser for lookup tables
in the NonLinLoc format (read_nlloc()). It is straightforward to adapt this code to read any other traveltime
lookup table, so long as it is stored as an array. Create an instance of the LUT class with the correct grid dimensions,
then add the (C-ordered) traveltime arrays to the LUT.traveltimes dictionary using:

lut.traveltimes.setdefault(STATION, {}).update(
{PHASE.upper(): traveltime_table})

where STATION and PHASE are station name and seismic phase strings, respectively.

Saving your LUT

If you provided a save_file argument to the compute_traveltimes function, the LUT will already be saved.
In any case, the lookup table object is returned by the compute_traveltimes function if you wish to explore the object
further. We use the pickle library (a Python standard library) to serialise the LUT, which essentially freezes the state
of the LUT. If you have added 3rd-party traveltime lookup tables to the LUT, you will need to save using:

5.2. Tutorials 19

http://alomax.free.fr/nlloc/

QuakeMigrate, Release 1.0.0

lut.save("/path/to/output/lut")

Reading in a saved LUT

When running the main stages of QuakeMigrate (detect, trigger, and locate) it is necessary to read in the saved LUT,
which can be done as:

from quakemigrate.io import read_lut
lut = read_lut(lut_file="/path/to/lut_file")

5.3 Source code

Explore the documentation and source code for the QuakeMigrate package.

5.3.1 quakemigrate.core

The quakemigrate.core module provides Python bindings for the library of compiled C routines that form the
core of QuakeMigrate:

• Migrate onsets - This routine performs the continuous migration through time and space of the onset functions.
It has been parallelised with openMP.

• Find maximum coalescence - This routine finds the continuous maximum coalescence amplitude in the 4-D
coalesence volume.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

Functions

Bindings for the C library functions, migrate and find_max_coa.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.core.lib.find_max_coa(map4d, threads)
Finds time series of the maximum coalescence/normalised coalescence in the 3-D volume, and the correspond-
ing grid indices.

Parameters

• map4d (numpy.ndarray of numpy.double) – 4-D coalescence map, shape(nx, ny, nz, nsam-
ples).

• threads (int) – Number of threads with which to perform the scan.

Returns

• max_coa (numpy.ndarray of numpy.double) – Time series of the maximum coalescence
value in the 3-D volume.

• max_norm_coa (numpy.ndarray of numpy.double) – Times series of the maximum nor-
malised coalescence value in the 3-D volume.

20 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• max_coa_idx (numpy.ndarray of int) – Time series of the flattened grid indices correspond-
ing to the maximum coalescence value in the 3-D volume.

quakemigrate.core.lib.migrate(onsets, traveltimes, first_idx, last_idx, available, threads)
Computes 4-D coalescence map by migrating seismic phase onset functions.

Parameters

• onsets (numpy.ndarry of float) – Onset functions for each seismic phase, shape(nstations,
nsamples).

• traveltimes (numpy.ndarry of int) – Grids of seismic phase traveltimes converted to an
integer multiple of the sampling rate, shape(nx, ny, nz, nstations).

• first_idx (int) – Index of first sample in array from which to scan.

• last_idx (int) – Index of last sample in array up to which to scan.

• available (int) – Number of available onset functions.

• threads (int) – Number of threads with which to perform the scan.

Returns map4d – 4-D coalescence map, shape(nx, ny, nz, nsamples).

Return type numpy.ndarray of numpy.double

Raises

• ValueError – If mismatch between number of onset functions and traveltime lookup
tables - expect both to be equal to the no. stations * no. phases.

• ValueError – If the number of samples in the onset functions is less than the number of
samples array is smaller than map4d[0, 0, 0, :].

5.3.2 quakemigrate.export

The quakemigrate.export module provides some utility functions to export the outputs of QuakeMigrate to
other catalogue formats/software inputs:

• Input files for NonLinLoc

• ObsPy Catalog object

• Snuffler pick/event files for manual phase picking

• MFAST for shear-wave splitting analysis

Warning: Export modules are an ongoing work in progress. The functionality

of the core module to_obspy has been validated, but there may still be bugs elsewhere. If you are interested
in using these, or wish to add additional functionality, please contact the QuakeMigrate developers at quakemi-
grate.developers@gmail.com .

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

5.3. Source code 21

mailto:quakemigrate.developers@gmail.com
mailto:quakemigrate.developers@gmail.com
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

quakemigrate.export.to_mfast

This module provides parsers to generate SAC waveform files from an ObsPy Catalog, with headers correctly popu-
lated for MFAST.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_mfast.sac_mfast(event, stations, output_path, filename=None)
Function to create the SAC file.

Parameters

• event (ObsPy Event object) – Contains information about the origin time and a list
of associated picks.

• stations (pandas DataFrame) – DataFrame containing station information.

• output_path (str) – Location to save the SAC file.

• filename (str, optional) – Name of SAC file - defaults to “even-
tid/eventid.station.{comp}”.

quakemigrate.export.to_nlloc

This module provides parsers to export an ObsPy Catalog to the NonLinLoc input file format. We prefer this to the
one offered by ObsPy as it includes the additional weighting term.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_nlloc.nlloc_obs(event, filename)
Write a NonLinLoc Phase file from an obspy Catalog object.

Parameters

• event (obspy Catalog object) – Contains information on a single event.

• filename (str) – Name of NonLinLoc phase file.

quakemigrate.export.to_obspy

This module provides parsers to export the output of a QuakeMigrate run to an ObsPy Catalog.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_obspy.read_quakemigrate(run_dir, units, run_subname=”, lo-
cal_mag_ph=’S’)

Reads the .event and .picks outputs, and .amps outputs if available, from a QuakeMigrate run into an obspy
Catalog object.

NOTE: if a station_corrections dict was used to calculate the network-averaged local magnitude, this information
will not be included in the obspy event object. There might therefore be a discrepancy between the mean of the
StationMagnitudes and the event magnitude.

Parameters

• run_dir (str) – Path to QuakeMigrate run directory.

22 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• units ({"km", "m"}) – Grid projection coordinates for QM LUT (determines units of
depths and uncertainties in the .event files).

• run_subname (str, optional) – Run_subname string (if applicable).

• local_mag_ph ({"S", "P"}, optional) – Amplitude measurement used to cal-
culate local magnitudes. (Default “S”)

Returns cat – Catalog containing events in the specified QuakeMigrate run directory.

Return type obspy.Catalog object

quakemigrate.export.to_snuffler

This module provides parsers to generate input files for Snuffler, a manual phase picking interface from the Pyrocko
package.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.export.to_snuffler.snuffler_markers(event, output_path, filename=None)
Function to create marker files compatible with snuffler

Parameters

• event (ObsPy Event object) – Contains information about the origin time and a list
of associated picks

• output_path (str) – Location to save the marker file

• filename (str, optional) – Name of marker file - defaults to even-
tid/eventid.markers

quakemigrate.export.to_snuffler.snuffler_stations(stations, output_path, filename, net-
work_code=None)

Function to create station files compatible with snuffler.

Parameters

• stations (pandas DataFrame) – DataFrame containing station information.

• output_path (str) – Location to save snuffler station file.

• filename (str) – Name of output station file.

• network_code (str) – Unique identifier for the seismic network.

5.3.3 quakemigrate.io

The quakemigrate.io module handles the various input/output operations performed by QuakeMigrate. This
includes:

• Reading waveform data - The submodule data.py can handle any waveform data archives with regular directory
structures.

• Writing results - The submodule quakeio.py provides a suite of functions to output QuakeMigrate results in the
QuakeMigrate format.

• Parse QuakeMigrate results into the ObsPy Catalog structure.

• Various parsers to input files for different pieces of software. Feel free to contribute more!

copyright 2020, QuakeMigrate developers.

5.3. Source code 23

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.amplitudes

Module to handle input/output of .amps files.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.amplitudes.write_amplitudes(run, amplitudes, event)
Write amplitude results to a new .amps file. This includes amplitude measurements, and the magnitude estimates
derived from them (with station correction terms appied, if provided).

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measurements for
each component of each station in the station file, and individual local magnitude estimates
derived from them. Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”, “P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”]

Index = Trace ID (see obspy.Trace object property ‘id’)

• event (Event object) – Light class encapsulating signal, onset, and location information
for a given event.

quakemigrate.io.availability

Module to handle input/output of StationAvailability.csv files.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.availability.read_availability(run, starttime, endtime)
Read in station availability data to a pandas.DataFrame from csv files split by Julian day.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object) – Timestamp from which to read the station
availability.

• endtime (obspy.UTCDateTime object) – Timestamp up to which to read the station avail-
ability.

Returns availability – Details the availability of each station for each timestep of detect.

Return type pandas.DataFrame object

quakemigrate.io.availability.write_availability(run, availability)
Write out csv files (split by Julian day) containing station availability data.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• availability (pandas.DataFrame object) – Details the availability of each station for
each timestep of detect.

24 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

quakemigrate.io.core

Module to handle input/output for QuakeMigrate.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.core.Run(path, name, subname=”, stage=None, loglevel=’info’)
Bases: object

Light class to encapsulate i/o path information for a given run.

Parameters

• stage (str) – Specifies run stage of QuakeMigrate (“detect”, “trigger”, or “locate”).

• path (str) – Points to the top level directory containing all input files, under which the
specific run directory will be created.

• name (str) – Name of the current QuakeMigrate run.

• subname (str, optional) – Optional name of a sub-run - useful when testing differ-
ent trigger parameters, for example.

path
Points to the top level directory containing all input files, under which the specific run directory will be
created.

Type pathlib.Path object

name
Name of the current QuakeMigrate run.

Type str

run_path
Points to the run directory into which files will be written.

Type pathlib.Path object

subname
Optional name of a sub-run - useful when testing different trigger parameters, for example.

Type str

stage
Track which stage of QuakeMigrate is being run.

Type {“detect”, “trigger”, “locate”}, optional

loglevel
Set the logging level. (Default “info”)

Type {“info”, “debug”}, optional

logger(log)
Spins up a logger configured to output to stdout or stdout + log file.

logger(log)
Configures the logging feature.

Parameters log (bool) – Toggle for logging. If True, will output to stdout and generate a log
file.

5.3. Source code 25

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

name
Get the run name as a formatted string.

quakemigrate.io.core.read_lut(lut_file)
Read the contents of a pickle file and restore state of the lookup table object.

Parameters lut_file (str) – Path to pickle file to load.

Returns lut – Lookup table populated with grid specification and traveltimes.

Return type LUT object

quakemigrate.io.core.read_response_inv(response_file, sac_pz_format=False)
Reads response information from file, returning it as a obspy.Inventory object.

Parameters

• response_file (str) – Path to response file. Please see the obspy.read_inventory()
documentation for a full list of supported file formats. This includes a dataless.seed volume,
a concatenated series of RESP files or a stationXML file.

• sac_pz_format (bool, optional) – Toggle to indicate that response information is
being provided in SAC Pole-Zero files. NOTE: not yet supported.

Returns response_inv – ObsPy response inventory.

Return type obspy.Inventory object

Raises

• NotImplementedError – If the user selects sac_pz_format.

• TypeError – If the user provides a response file that is not readable by ObsPy.

quakemigrate.io.core.read_stations(station_file, **kwargs)
Reads station information from file.

Parameters

• station_file (str) – Path to station file. File format (header line is REQUIRED, case
sensitive, any order):

Latitude, Longitude, Elevation (units of metres), Name

• kwargs (dict) – Passthrough for pandas.read_csv kwargs.

Returns stn_data – Columns: “Latitude”, “Longitude”, “Elevation”, “Name”

Return type pandas.DataFrame object

Raises StationFileHeaderException – Raised if the input file is missing required entries
in the header.

quakemigrate.io.core.read_vmodel(vmodel_file, **kwargs)
Reads velocity model information from file.

Parameters

• vmodel_file (str) – Path to velocity model file. File format: (header line is RE-
QUIRED, case sensitive, any order): Depth (units of metres), Vp, Vs (units of metres per
second)

• kwargs (dict) – Passthrough for pandas.read_csv kwargs.

Returns vmodel_data – Columns: “Depth”, “Vp”, “Vs”

Return type pandas.DataFrame object

26 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Raises VelocityModelFileHeaderException – Raised if the input file is missing required
entries in the header.

quakemigrate.io.core.stations(station_file, **kwargs)
Alias for read_stations.

quakemigrate.io.cut_waveforms

Module to handle input/output of cut waveforms.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.cut_waveforms.write_cut_waveforms(run, event, file_format, pre_cut=0.0,
post_cut=0.0)

Output raw cut waveform data as a waveform file – defaults to mSEED.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• event (Event object) – Light class encapsulating signal, onset, and location information
for a given event.

• file_format (str, optional) – File format to write waveform data to. Options
are all file formats supported by obspy, including: “MSEED” (default), “SAC”, “SEGY”,
“GSE2”

• pre_cut (float, optional) – Specify how long before the event origin time to cut
the waveform data from

• post_cut (float, optional) – Specify how long after the event origin time to cut
the waveform data to

quakemigrate.io.data

Module for processing waveform files stored in a data archive.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.data.Archive(archive_path, stations, archive_format=None, **kwargs)
Bases: object

The Archive class handles the reading of archived waveform data.

It is capable of handling any regular archive structure. Requests to read waveform data are served up as a
quakemigrate.data.WaveformData object. Data will be checked for availability within the requested time period,
and optionally resampled to meet a unified sampling rate. The raw data read from the archive will also be
retained.

If provided, a response inventory provided for the archive will be stored with the waveform data for response
removal, if needed.

Parameters

• archive_path (str) – Location of seismic data archive: e.g.: ./DATA_ARCHIVE.

• stations (pandas.DataFrame object) – Station information. Columns [“Latitude”, “Lon-
gitude”, “Elevation”, “Name”]

5.3. Source code 27

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• archive_format (str, optional) – Sets path type for different archive formats.

• kwargs (**dict) – See Archive Attributes for details.

archive_path
Location of seismic data archive: e.g.: ./DATA_ARCHIVE.

Type pathlib.Path object

stations
Series object containing station names.

Type pandas.Series object

format
File naming format of data archive.

Type str

read_all_stations
If True, read all stations in archive for that time period. Else, only read specified stations.

Type bool, optional

resample
If true, perform resampling of data which cannot be decimated directly to the desired sampling rate.

Type bool, optional

response_inv
ObsPy response inventory for this waveform archive, containing response information for each channel of
each station of each network.

Type obspy.Inventory object, optional

upfactor
Factor by which to upsample the data to enable it to be decimated to the desired sampling rate, e.g. 40Hz
-> 50Hz requires upfactor = 5.

Type int, optional

path_structure(path_type="YEAR/JD/STATION")
Set the file naming format of the data archive.

read_waveform_data(starttime, endtime, sampling_rate)
Read in all waveform data between two times, decimate / resample if required to reach desired sampling
rate. Return all raw data as an obspy Stream object and processed data for specified stations as an array
for use by QuakeScan to calculate onset functions for migration.

path_structure(archive_format=’YEAR/JD/STATION’, channels=’*’)
Define the path structure of the data archive.

Parameters

• archive_format (str, optional) – Sets path type for different archive formats.

• channels (str, optional) – Channel codes to include. E.g. channels=”[B,H]H*”.
(Default “*”)

Raises ArchivePathStructureError – If the archive_format specified by the user is not
a valid option.

read_waveform_data(starttime, endtime, sampling_rate, pre_pad=0.0, post_pad=0.0)
Read in the waveform data for all stations in the archive between two times and return station availability

28 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

of the stations specified in the station file during this period. Decimate / resample (optional) this data if
required to reach desired sampling rate.

Output both processed data for stations in station file and all raw data in an obspy Stream object.

By default, data with mismatched sampling rates will only be decimated. If necessary, and if the user
specifies resample = True and an upfactor to upsample by upfactor = int, data can also be upsampled and
then, if necessary, subsequently decimated to achieve the desired sampling rate.

For example, for raw input data sampled at a mix of 40, 50 and 100 Hz, to achieve a unified sampling
rate of 50 Hz, the user would have to specify an upfactor of 5; 40 Hz x 5 = 200 Hz, which can then be
decimated to 50 Hz.

NOTE: data will be detrended and a cosine taper applied before decimation, in order to avoid edge effects
when applying the lowpass filter. Otherwise, data for migration will be added tp data.signal with no
processing applied.

Supports all formats currently supported by ObsPy, including: “MSEED” (default), “SAC”, “SEGY”,
“GSE2” .

Parameters

• starttime (obspy.UTCDateTime object, optional) – Timestamp from which to read
waveform data.

• endtime (obspy.UTCDateTime object, optional) – Timestamp up to which to read wave-
form data.

• sampling_rate (int) – Desired sampling rate for data to be added to signal. This will
be achieved by resampling the raw waveform data. By default, only decimation will be
applied, but data can also be upsampled if specified by the user when creating the Archive
object.

• pre_pad (float, optional) – Additional pre pad of data to cut based on user-
defined pre_cut parameter. Defaults to none: pre_pad calculated in QuakeScan will be
used (included in starttime).

• post_pad (float, optional) – Additional post pad of data to cut based on user-
defined post_cut parameter. Defaults to none: post_pad calculated in QuakeScan will be
used (included in endtime).

Returns data – Object containing the archived data that satisfies the query.

Return type WaveformData object

class quakemigrate.io.data.WaveformData(starttime, endtime, sampling_rate, stations=None,
response_inv=None, read_all_stations=False,
pre_pad=0.0, post_pad=0.0)

Bases: object

The WaveformData class encapsulates the waveform data returned by an‘ Archive query.

This includes the waveform data which has been pre-processed to a unified sampling rate, and checked for gaps,
ready for use to calculate onset functions.

Parameters

• starttime (obspy.UTCDateTime object) – Timestamp of first sample of waveform data.

• endtime (obspy.UTCDateTime object) – Timestamp of last sample of waveform data.

• sampling_rate (int) – Desired sampling rate of signal data.

• stations (pandas.Series object, optional) – Series object containing station names.

5.3. Source code 29

QuakeMigrate, Release 1.0.0

• read_all_stations (bool, optional) – If True, raw_waveforms contain all sta-
tions in archive for that time period. Else, only selected stations will be included.

• response_inv (obspy.Inventory object, optional) – ObsPy response inventory for this
waveform archive, containing response information for each channel of each station of each
network.

• pre_pad (float, optional) – Additional pre pad of data cut based on user-defined
pre_cut parameter.

• post_pad (float, optional) – Additional post pad of data cut based on user-defined
post_cut parameter.

starttime
Timestamp of first sample of waveform data.

Type obspy.UTCDateTime object

endtime
Timestamp of last sample of waveform data.

Type obspy.UTCDateTime object

sampling_rate
Sampling rate of signal data.

Type int

stations
Series object containing station names.

Type pandas.Series object

read_all_stations
If True, raw_waveforms contain all stations in archive for that time period. Else, only selected stations will
be included.

Type bool

raw_waveforms
Raw seismic data found and read in from the archive within the specified time period. This may be for all
stations in the archive, or only those specified by the user. See read_all_stations.

Type obspy.Stream object

pre_pad
Additional pre pad of data cut based on user-defined pre_cut parameter.

Type float

post_pad
Additional post pad of data cut based on user-defined post_cut parameter.

Type float

signal
3-component seismic data at the desired sampling rate; only for desired stations, which have continuous
data on all 3 components throughout the desired time period and where (if necessary) the data could be
successfully resampled to the desired sampling rate.

Type numpy.ndarray, shape(3, nstations, nsamples)

availability
Array containing 0s (no data) or 1s (data), corresponding to whether data for each station met the require-
ments outlined in signal

30 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Type np.ndarray of ints, shape(nstations)

filtered_signal
Filtered data originally from signal.

Type numpy.ndarray, shape(3, nstations, nsamples)

add_stream(stream, resample, upfactor)
Function to add data supplied in the form of an obspy.Stream object.

get_wa_waveform(trace, **response_removal_params)
Calculate the Wood-Anderson corrected waveform for a obspy.Trace object.

times()
Utility function to generate the corresponding timestamps for the waveform and coalescence data.

Raises NotImplementedError – If the user attempts to use the get_real_waveform() method.

add_stream(stream, resample, upfactor)
Add signal data supplied in an obspy.Stream object. Perform resampling if necessary (decimation and/or
upsampling), and determine availability of selected stations.

stream [obspy.Stream object] Contains list of obspy.Trace objects containing the waveform data to add.

resample [bool, optional] If true, perform resampling of data which cannot be decimated directly to the
desired sampling rate.

upfactor [int, optional] Factor by which to upsample the data to enable it to be decimated to the desired
sampling rate, e.g. 40Hz -> 50Hz requires upfactor = 5.

get_real_waveforms(tr, remove_full_response=False, velocity=True)
Coming soon.

get_wa_waveform(tr, water_level, pre_filt, remove_full_response=False, velocity=False)
Calculate simulated Wood Anderson displacement waveform for a Trace.

Parameters

• tr (obspy.Trace object) – Trace containing the waveform to be corrected to a Wood-
Anderson response

• water_level (float) – Water-level to be used in the instrument correction.

• pre_filt (tuple of floats, or None) – Filter corners describing filter to be
applied to the trace before deconvolution. E.g. (0.05, 0.06, 30, 35) (in Hz)

• remove_full_response (bool, optional) – Remove all response stages, inc.
FIR (st.remove_response()), not just poles-and-zero response stage. Default: False.

• velocity (bool, optional) – Output velocity waveform, instead of displacement.
Default: False.

Returns tr – Trace corrected to Wood-Anderson response.

Return type obspy.Trace object

Raises

• AttributeError – If no response inventory has been supplied.

• ResponseNotFoundError – If the response information for a trace can’t be found in
the supplied response inventory.

• ResponseRemovalError – If the deconvolution of the instrument response and sim-
ulation of the Wood-Anderson response is unsuccessful.

5.3. Source code 31

QuakeMigrate, Release 1.0.0

• NotImplementedError – If the user selects velocity=True.

sample_size
s).

Type Get the size of a sample (units

times(**kwargs)
Utility function to generate timestamps between data.starttime and data.endtime, with a sample size of
data.sample_size

Returns times – Timestamps for the timeseries data.

Return type numpy.ndarray, shape(nsamples)

quakemigrate.io.scanmseed

Module to handle input/output of .scanmseed files.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.io.scanmseed.ScanmSEED(run, continuous_write, sampling_rate)
Bases: object

Light class to encapsulate the data output by the detect stage of QuakeMigrate. This data is stored in an ob-
spy.Stream object with the channels: [“COA”, “COA_N”, “X”, “Y”, “Z”].

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• continuous_write (bool) – Option to continuously write the .scanmseed file output
by detect() at the end of every time step. Default behaviour is to write in day chunks where
possible.

• sampling_rate (int) – Desired sampling rate of input data; sampling rate at which to
compute the coalescence function. Default: 50 Hz.

stream
Output of detect() stored in obspy.Stream object. The values have been multiplied by a factor to make use
of more efficient compression. Channels: [“COA”, “COA_N”, “X”, “Y”, “Z”]

Type obspy.Stream object

written
Tracker for whether the data appended has been written recently.

Type bool

append(times, max_coa, max_coa_n, coord, map4d=None)
Append the output of QuakeScan._compute() to the coalescence stream.

empty(starttime, timestep, i, msg)
Create an set of empty arrays for a given timestep and append to the coalescence stream.

write(write_start=None, write_end=None)
Write the coalescence stream to a .scanmseed file.

append(starttime, max_coa, max_coa_n, coord, ucf)
Append latest timestep of detect() output to obspy.Stream object. Multiply channels [“COA”, “COA_N”,
“X”, “Y”, “Z”] by factors of [“1e5”, “1e5”, “1e6”, “1e6”, “1e3”] respectively, round and convert to int32

32 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

as this dramatically reduces memory usage, and allows the coastream data to be saved in mSEED format
with STEIM2 compression. The multiplication factor is removed when the data is read back in.

Parameters

• starttime (obspy.UTCDateTime object) – Timestamp of first sample of coalescence
data.

• max_coa (numpy.ndarray of floats, shape(nsamples)) – Coalescence value through time.

• max_coa_n (numpy.ndarray of floats, shape(nsamples)) – Normalised coalescence value
through time.

• coord (numpy.ndarray of floats, shape(nsamples)) – Location of maximum coalescence
through time in input projection space.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used to
ensure the same level of precision (millimetre) is retained during compression, irrespective
of the units of the grid projection.

empty(starttime, timestep, i, msg, ucf)
Create an empty set of arrays to write to .scanmseed; used where there is no data available to run _com-
pute().

Parameters

• starttime (obspy.UTCDateTime object) – Timestamp of first sample in the given
timestep.

• timestep (float) – Length (in seconds) of timestep used in detect().

• i (int) – The ith timestep of the continuous compute.

• msg (str) – Message to output to log giving details as to why this timestep is empty.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used to
ensure the same level of precision (millimetre) is retained during compression, irrespective
of the units of the grid projection.

write(write_start=None, write_end=None)
Write a new .scanmseed file from an obspy.Stream object containing the data output from detect(). Note:
values have been multiplied by a power of ten, rounded and converted to an int32 array so the data can be
saved as mSEED with STEIM2 compression. This multiplication factor is removed when the data is read
back in with read_scanmseed().

Parameters

• write_start (obspy.UTCDateTime object, optional) – Timestamp from which to write
the coalescence stream to file.

• write_end (obspy.UTCDateTime object, optional) – Timestamp up to which to write
the coalescence stream to file.

quakemigrate.io.scanmseed.read_scanmseed(run, starttime, endtime, pad, ucf)
Read .scanmseed files between two time stamps. Files are labelled by year and Julian day.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object) – Timestamp from which to read the coales-
cence stream.

• endtime (obspy.UTCDateTime object) – Timestamp up to which to read the coalescence
stream.

5.3. Source code 33

QuakeMigrate, Release 1.0.0

• pad (float) – Read in “pad” seconds of additional data on either end.

• ucf (float) – A conversion factor based on the lookup table grid projection. Used to
ensure the same level of precision (millimetre) is retained during compression, irrespective
of the units of the grid projection.

Returns

• data (pandas.DataFrame object) – Data output by detect() – decimated scan. Columns:
[“DT”, “COA”, “COA_N”, “X”, “Y”, “Z”] - X/Y/Z as lon/lat/m

• stats (obspy.trace.Stats object) – Container for additional header information for coales-
cence trace. Contains keys: network, station, channel, starttime, endtime,

sampling_rate, delta, npts, calib, _format, mseed

quakemigrate.io.triggered_events

Module to handle input/output of TriggeredEvents.csv files.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.io.triggered_events.read_triggered_events(run, **kwargs)
Read triggered events from .csv file.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• starttime (obspy.UTCDateTime object, optional) – Timestamp from which to include
events in the locate scan.

• endtime (obspy.UTCDateTime object, optional) – Timestamp up to which to include
events in the locate scan.

• trigger_file (str, optional) – File containing triggered events to be located.

Returns events – Triggered events information. Columns: [“EventID”, “CoaTime”, “TRIG_COA”,
“COA_X”, “COA_Y”, “COA_Z”, “COA”, “COA_NORM”].

Return type pandas.DataFrame object

quakemigrate.io.triggered_events.write_triggered_events(run, events, starttime)
Write triggered events to a .csv file.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• events (pandas.DataFrame object) – Triggered events information. Columns:
[“EventID”, “CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “COA”,
“COA_NORM”].

• starttime (obspy.UTCDateTime object) – Timestamp from which events have been trig-
gered.

5.3.4 quakemigrate.lut package

The quakemigrate.lut module handles the definition and generation of the traveltime lookup tables used in
QuakeMigrate.

34 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.lut.update_lut(old_lut_file, save_file)
Utility function to convert old-style LUTs to new-style LUTs.

Parameters

• old_lut_file (str) – Path to lookup table file to update.

• save_file (str, optional) – Output path for updated lookup table.

quakemigrate.lut.create_lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.lut.create_lut.compute_traveltimes(grid_spec, stations, method,
phases=[’P’, ’S’], fraction_tt=0.1,
save_file=None, log=False,
**kwargs)

Top-level method for computing traveltime lookup tables.

This function takes a grid specification and is capable of computing traveltimes for an arbitrary number of phases
using a variety of techniques.

Parameters

• grid_spec (dict) – Dictionary containing all of the defining parameters for the underly-
ing 3-D grid on which the traveltimes are to be calculated. For expected keys, see Grid3D.

• stations (pandas.DataFrame) – DataFrame containing station information (lat/lon/elev).

• method (str) –

Method to be used when computing the traveltime lookup tables. ”homogeneous” -
straight line velocities “1dfmm” - 1-D fast-marching method using scikit-fmm “1dsweep”
- a 2-D traveltime grid for a 1-D velocity model is swept

over the 3-D grid using a bilinear interpolation scheme

• phases (list of str, optional) – List of seismic phases for which to calculate
traveltimes.

• fraction_tt (float, optional) – An estimate of the uncertainty in the velocity
model as a function of a fraction of the traveltime. (Default 0.1 == 10%)

• filename (str, optional) – Path to location to save pickled lookup table.

• log (bool, optional) – Toggle for logging - default is to only print information to
stdout. If True, will also create a log file.

• kwargs (dict) – Dictionary of all keyword arguments passed to compute when called.
For lists of valid arguments, please refer to the relevant method.

Returns lut – Lookup table populated with traveltimes from the NonLinLoc files.

Return type LUT object

5.3. Source code 35

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

quakemigrate.lut.create_lut.read_nlloc(path, stations, phases=[’P’, ’S’], fraction_tt=0.1,
log=False)

Read in a traveltime lookup table that is saved in the NonLinLoc format.

Parameters

• path (str) – Path to directory containing .buf and .hdr files.

• stations (pandas.DataFrame) – DataFrame containing station information (lat/lon/elev).

• phases (list of str, optional) – List of seismic phases for which to calculate
traveltimes.

• fraction_tt (float, optional) – An estimate of the uncertainty in the velocity
model as a function of a fraction of the traveltime. (Default 0.1 == 10%)

• log (bool, optional) – Toggle for logging - default is to only print information to
stdout. If True, will also create a log file.

Returns lut – Lookup table populated with traveltimes from the NonLinLoc files.

Return type LUT object

quakemigrate.lut.lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.lut.lut.Grid3D(ll_corner, ur_corner, node_spacing, grid_proj, coord_proj)
Bases: object

A grid object represents a collection of points in a 3-D Cartesian space that can be used to produce regularised
traveltime lookup tables that sample the continuous traveltime space for each station in a seismic network.

This class also provides the series of transformations required to move between the input projection, the grid
projection and the grid index coordinate spaces.

The size and shape specifications of the grid are defined by providing the (input projection) coordinates for the
lower-left and upper-right corners, a node spacing and the projections (defined using pyproj) of the input and
grid spaces.

coord_proj
Input coordinate space projection.

Type pyproj.Proj object

grid_corners
Positions of the corners of the grid in the grid coordinate space.

Type array-like, shape (8, 3)

grid_proj
Grid space projection.

Type pyproj.Proj object

grid_xyz
Positions of the grid nodes in the grid coordinate space. The shape of each element of the list is defined by
the number of nodes in each dimension.

Type array-like, shape (3, nx, ny, nz)

36 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

ll_corner
Location of the lower-left corner of the grid in the grid projection. Should also contain the minimum depth
in the grid.

Type array-like, [float, float, float]

node_count
Number of nodes in each dimension of the grid. This is calculated by finding the number of nodes with a
given node spacing that fit between the lower-left and upper-right corners. This value is rounded up if the
number of nodes returned is non-integer, to ensure the requested area is included in the grid.

Type array-like, [int, int, int]

node_spacing
Distance between nodes in each dimension of the grid.

Type array-like, [float, float, float]

precision
An appropriate number of decimal places for distances as a function of the node spacing and coordinate
projection.

Type list of float

unit_conversion_factor
A conversion factor based on the grid projection, used to convert between units of metres and kilometres.

Type float

unit_name
Shorthand string for the units of the grid projection.

Type str

ur_corner
Location of the upper-right corner of the grid in the grid projection. Should also contain the maximum
depth in the grid.

Type array-like, [float, float, float]

coord2grid(value, inverse=False, clip=False)
Provides a transformation between the input projection and grid coordinate spaces.

decimate(df, inplace=False)
Downsamples the traveltime lookup tables by some decimation factor.

index2coord(value, inverse=False, unravel=False, clip=False)
Provides a transformation between grid indices (can be a flattened index or an [i, j, k] position) and the
input projection coordinate space.

index2grid(value, inverse=False, unravel=False)
Provides a transformation between grid indices (can be a flattened index or an [i, j, k] position) and the
grid coordinate space.

cell_count
Handler for deprecated attribute name ‘cell_count’

cell_size
Handler for deprecated attribute name ‘cell_size’

coord2grid(value, inverse=False)
Convert between input coordinate space and grid coordinate space.

Parameters

5.3. Source code 37

QuakeMigrate, Release 1.0.0

• value (array-like) – Array (of arrays) containing the coordinate locations to be
transformed. Each sub-array should describe a single point in the 3-D input space.

• inverse (bool, optional) – Reverses the direction of the transform. Default input
coordinates -> grid coordinates

Returns out – Returns an array of arrays of the transformed values.

Return type array-like

decimate(df, inplace=False)
Resample the traveltime lookup tables by decimation by some factor.

Parameters

• df (array-like [int, int, int]) – Decimation factor in each dimension.

• inplace (bool, optional) – Perform the operation on the lookup table object or a
copy.

Returns grid – Returns a Grid3D object with decimated traveltime lookup tables.

Return type Grid3D object (optional)

get_grid_extent(cells=False)
Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid nodes. It is useful, for visualisation
purposes, to also be able to determine the grid extent as the convex hull of a grid of cells centred on the
grid nodes.

Parameters cells (bool, optional) – Specifies the grid mode (nodes / cells) for which
to calculate the extent.

Returns extent – Pair of arrays representing two corners for the grid.

Return type array-like

grid_corners
Get the xyz positions of the nodes on the corners of the grid.

grid_extent
Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid nodes. It is useful, for visualisation
purposes, to also be able to determine the grid extent as the convex hull of a grid of cells centred on the
grid nodes.

Parameters cells (bool, optional) – Specifies the grid mode (nodes / cells) for which
to calculate the extent.

Returns extent – Pair of arrays representing two corners for the grid.

Return type array-like

grid_xyz
Get the xyz positions of all of the nodes in the grid.

index2coord(value, inverse=False, unravel=False)
Convert between grid indices and input coordinate space.

This is a utility function that wraps the other two defined transforms.

Parameters

38 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

• value (array-like) – Array (of arrays) containing the grid indices (grid coordinates)
to be transformed. Can be an array of flattened indices.

• inverse (bool, optional) – Reverses the direction of the transform. Default in-
dices -> input projection coordinates.

• unravel (bool, optional) – Convert a flat index or array of flat indices into a tuple
of coordinate arrays.

Returns out – Returns an array of arrays of the transformed values.

Return type array-like

index2grid(value, inverse=False, unravel=False)
Convert between grid indices and grid coordinate space.

Parameters

• value (array-like) – Array (of arrays) containing the grid indices (grid coordinates)
to be transformed. Can be an array of flattened indices.

• inverse (bool, optionale) – Reverses the direction of the transform. Default
indices -> grid coordinates.

• unravel (bool, optional) – Convert a flat index or array of flat indices into a tuple
of coordinate arrays.

Returns out – Returns an array of arrays of the transformed values.

Return type array-like

node_count
Get and set the number of nodes in each dimension of the grid.

node_spacing
Get and set the spacing of nodes in each dimension of the grid.

precision
Get appropriate number of decimal places as a function of the node spacing and coordinate projection.

unit_conversion_factor
Expose unit_conversion_factor of the grid projection.

unit_name
Expose unit_name of the grid_projection and return shorthand.

class quakemigrate.lut.lut.LUT(fraction_tt=0.1, lut_file=None, **grid_spec)
Bases: quakemigrate.lut.lut.Grid3D

A lookup table (LUT) object is a simple data structure that is used to store a series of regularised tables that, for
each seismic station in a network, store the traveltimes to every point in the 3-D volume. These lookup tables
are pre-computed to reduce the computational cost of the back-projection method.

This class provides utility functions that can be used to serve up or query these pre-computed lookup tables.

This object is-a Grid3D.

fraction_tt
An estimate of the uncertainty in the velocity model as a function of a fraction of the traveltime. (Default
0.1 == 10%)

Type float

max_traveltime
The maximum traveltime between any station and a point in the grid.

5.3. Source code 39

QuakeMigrate, Release 1.0.0

Type float

phases
Seismic phases for which there are traveltime lookup tables available.

Type list of str

stations_xyz
Positions of the stations in the grid coordinate space.

Type array-like, shape (n, 3)

traveltimes
A dictionary containing the traveltime lookup tables. The structure of this dictionary is:

traveltimes

• “<Station1-ID>”

– “<PHASE>”

– “<PHASE>”

• “<Station2-ID”

– “<PHASE>”

– “<PHASE>”

etc

Type dict

velocity_model
Contains the input velocity model specification.

Type ~pandas.DataFrame object

serve_traveltimes(sampling_rate)
Serve up the traveltime lookup tables.

traveltime_to(phase, ijk)
Query traveltimes to a grid location (in terms of indices) for a particular phase.

save(filename)
Dumps the current state of the lookup table object to a pickle file.

load(filename)
Restore the state of the saved LUT object from a pickle file.

plot(fig, gs, slices=None, hypocentre=None, station_clr="k")
Plot cross-sections of the LUT with station locations. Optionally plot slices through a coalescence volume.

load(filename)
Read the contents of a pickle file and restore state of the lookup table object.

Parameters filename (str) – Path to pickle file to load.

max_extent
Get the minimum/maximum geographical extent of the stations/grid.

max_traveltime
Get the maximum traveltime from any station across the grid.

plot(fig, gs, slices=None, hypocentre=None, station_clr=’k’)
Plot the lookup table for a particular station.

40 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Parameters

• fig (~matplotlib.Figure object) – Canvas on which LUT is plotted.

• gs (tuple(int, int)) – Grid specification for the plot.

• slices (array of arrays, optional) – Slices through a coalescence vol-
ume to plot.

• hypocentre (array of floats) – Event hypocentre - will add cross-hair to
plot.

• station_clr (str, optional) – Plot the stations with a particular colour.

save(filename)
Dump the current state of the lookup table object to a pickle file.

Parameters filename (str) – Path to location to save pickled lookup table.

serve_traveltimes(sampling_rate)
Serve up the traveltime lookup tables.

The traveltimes are multiplied by the scan sampling rate and converted to integers.

Parameters sampling_rate (int) – Samples per second used in the scan run.

Returns traveltimes – Stacked traveltime lookup tables for all seismic phases, stacked along
the station axis, with shape(nx, ny, nz, nstations)

Return type numpy.ndarray of numpy.int

station_extent
Get the minimum/maximum extent of the seismic network.

stations_xyz
Get station locations in the grid space [X, Y, Z].

traveltime_to(phase, ijk)
Serve up the traveltimes to a grid location for a particular phase.

Parameters

• phase (str) – The seismic phase to lookup.

• ijk (array-like) – Grid indices for which to serve traveltime.

Returns traveltimes – Array of interpolated traveltimes to the requested grid position.

Return type array-like

5.3.5 quakemigrate.plot

The quakemigrate.plot module provides methods for the generation of figures in QuakeMigrate, including:

• Event summaries

• Phase pick summaries

• Triggered event summaries

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

5.3. Source code 41

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

quakemigrate.plot.event

Module containing methods to generate event summaries and videos.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.event.event_summary(run, event, marginal_coalescence, lut,
xy_files=None)

Plots an event summary illustrating the locate results: slices through the marginalised coalescence with the
location estimates (best-fitting spline to interpolated coalescence; Gaussian fit; covariance fit) and associated
uncertainties; a gather of the filtered station data, sorted by distance from the event; and the maximum coales-
cence through time.

Parameters

• run (Run object) – Light class encapsulating i/o path information for a given run.

• event (Event object) – Light class encapsulating signal, onset, and location informa-
tion for a given event.

• marginal_coalescence (~numpy.ndarray of ~numpy.double) – Marginalised 3-D
coalescence map, shape(nx, ny, nz).

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

• xy_files (str, optional) – Path to comma-separated value file (.csv) containing
a series of coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”, “Linestyle”],
where “File” is the absolute path to the file containing the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines
pre-pended with # will be treated as a comment - this can be used to include references.
See the Volcanotectonic_Iceland example XY_files for a template.

Note: Do not include a header line in either file.

quakemigrate.plot.phase_picks

Module to produce a summary plot for the phase picking.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.phase_picks.pick_summary(event, station, signal, picks, onsets, ttimes,
window)

Plot figure showing the filtered traces for each data component and the characteristic functions calculated from
them (P and S) for each station. The search window to make a phase pick is displayed, along with the dynamic
pick threshold (defined as a percentile of the background noise level), the phase pick time and its uncertainty (if
made) and the Gaussian fit to the characteristic function.

Parameters

• event (str) – Unique identifier for the event.

• station (str) – Station code.

• signal (numpy.ndarray of int) – Seismic data for the Z N and E components.

42 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• picks (pandas DataFrame object) – Phase pick times with columns [“Name”,
“Phase”, “ModelledTime”, “PickTime”, “PickError”, “SNR”] Each row contains the
phase pick from one station/phase.

• onsets (numpy.ndarray of float) – Onset functions for each seismic phase,
shape(nstations, nsamples).

• ttimes (list, [int, int]) – Modelled phase travel times.

• window (list, [int, int]) – Indices specifying the window within which the
pick was made.

Returns fig – Figure showing basic phase picking information.

Return type matplotlib.Figure object

quakemigrate.plot.trigger

Module to plot the triggered events on a decimated grid.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.plot.trigger.trigger_summary(events, starttime, endtime, run,
marginal_window, min_event_interval, de-
tection_threshold, normalise_coalescence,
lut, data, region, savefig, discarded_events,
xy_files=None)

Plots the data from a .scanmseed file with annotations illustrating the trigger results: event triggers and marginal
windows on the coalescence traces, and map and cross section view of the gridded triggered earthquake loca-
tions.

Parameters

• events (pandas.DataFrame) – Triggered events information, columns: [“EventID”,
“CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “MinTime”, “MaxTime”,
“COA”, “COA_NORM”].

• starttime (obspy.UTCDateTime) – Start time of trigger run.

• endtime (obspy.UTCDateTime) – End time of trigger run.

• run (Run object) – Light class encapsulating i/o path information for a given run.

• marginal_window (float) – Estimate of time error over which to marginalise the
coalescence.

• min_event_interval (float) – Minimum time interval between triggered events.

• detection_threshold (array-like) – Coalescence value above which to trig-
ger events.

• normalise_coalescence (bool) – If True, use coalescence normalised by the av-
erage background noise.

• lut (LUT object) – Contains the traveltime lookup tables for P- and S-phases, computed
for some pre-defined velocity model.

• data (pandas.DataFrame) – Data output by detect() – decimated scan, columns
[“COA”, “COA_N”, “X”, “Y”, “Z”]

• region (list) – Geographical region within which earthquakes have been triggered.

5.3. Source code 43

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• savefig (bool) – Output the plot as a file. The plot is shown by default, and not saved.

• discarded_events (pandas.DataFrame) – Discarded triggered events information,
columns: [“EventID”, “CoaTime”, “TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”,
“MinTime”, “MaxTime”, “COA”, “COA_NORM”].

• xy_files (str, optional) – Path to comma-separated value file (.csv) containing
a series of coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”, “Linestyle”],
where “File” is the absolute path to the file containing the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines
pre-pended with # will be treated as a comment - this can be used to include references.
See the Volcanotectonic_Iceland example XY_files for a template.

Note: Do not include a header line in either file.

5.3.6 quakemigrate.signal

The quakemigrate.signal module handles the core of the QuakeMigrate methods. This includes:

• Generation of onset functions from raw data.

• Picking of waveforms from onset functions.

• Raw scan for detect and locate.

• Measurement of amplitudes and calculation of local earthquake magnitudes.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

Subpackages

quakemigrate.signal.onsets

The quakemigrate.onsets module handles the generation of Onset functions. The default method uses the ratio
between the short-term and long-term averages.

Feel free to contribute more Onset function options!

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.signal.onsets.base

A simple abstract base class with method stubs to enable users to extend QuakeMigrate with custom onset functions
that remain compatible with the core of the package.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

44 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

class quakemigrate.signal.onsets.base.Onset(**kwargs)
Bases: abc.ABC

QuakeMigrate default onset function class.

sampling_rate
Desired sampling rate for input data; sampling rate at which the onset functions will be computed.

Type int

pre_pad
Option to override the default pre-pad duration of data to read before computing 4-D coalescence in
detect() and locate().

Type float, optional

post_pad
Option to override the default post-pad duration of data to read before computing 4-D coalescence in
detect() and locate().

Type float

calculate_onsets()
Generate onset functions that represent seismic phase arrivals

calculate_onsets()
Method stub for calculation of onset functions.

gaussian_halfwidth(phase)
Method stub for Gaussian half-width estimate.

pad(timespan)
Determine the number of samples needed to pre- and post-pad the timespan.

Parameters timespan (float) – The time window to pad.

Returns

• pre_pad (float) – Option to override the default pre-pad duration of data to read before
computing 4-D coalescence in detect() and locate().

• post_pad (float) – Option to override the default post-pad duration of data to read
before computing 4-D coalescence in detect() and locate().

post_pad
Get property stub for pre_pad.

pre_pad
Get property stub for pre_pad.

quakemigrate.signal.onsets.stalta

The default onset function class - performs some pre-processing on raw seismic data and calculates STA/LTA onset
(characteristic) function.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.onsets.stalta.CentredSTALTAOnset(**kwargs)
Bases: quakemigrate.signal.onsets.stalta.STALTAOnset

QuakeMigrate default onset function class - uses a centred STA/LTA onset.

5.3. Source code 45

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

class quakemigrate.signal.onsets.stalta.ClassicSTALTAOnset(**kwargs)
Bases: quakemigrate.signal.onsets.stalta.STALTAOnset

QuakeMigrate default onset function class - uses a classic STA/LTA onset.

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

class quakemigrate.signal.onsets.stalta.STALTAOnset(**kwargs)
Bases: quakemigrate.signal.onsets.base.Onset

QuakeMigrate default onset function class - uses a classic STA/LTA onset.

p_bp_filter
Butterworth bandpass filter specification [lowpass (Hz), highpass (Hz), corners*] *NOTE: two-pass filter
effectively doubles the number of corners.

Type array-like, [float, float, int]

s_bp_filter
Butterworth bandpass filter specification [lowpass (Hz), highpass (Hz), corners*] *NOTE: two-pass filter
effectively doubles the number of corners.

Type array-like, [float, float, int]

p_onset_win
P onset window parameters [STA, LTA] (both in seconds)

Type array-like, [float, float]

s_onset_win
S onset window parameters [STA, LTA] (both in seconds)

Type array-like, [float, float]

sampling_rate
Desired sampling rate for input data, in Hz; sampling rate at which the onset functions will be computed.

Type int

pre_pad
Option to override the default pre-pad duration of data to read before computing 4-D coalescence in
detect() and locate(). Default value is calculated from the onset function parameters.

Type float, optional

position
Compute centred STA/LTA (STA window is preceded by LTA window; value is assigned to end of LTA
window / start of STA window) or classic STA/LTA (STA window is within LTA window; value is assigned
to end of STA & LTA windows). Default: “classic”.

Centred gives less phase-shifted (late) onset function, and is closer to a Gaussian approximation, but is
far more sensitive to data with sharp offsets due to instrument failures. We recommend using classic for
detect() and centred for locate() if your data quality allows it. This is the default behaviour; override by
setting this variable.

Type str, optional

calculate_onsets()
Generate onset functions that represent seismic phase arrivals

calculate_onsets(data, log=True, run=None)
Returns a stacked pair of onset (characteristic) functions for the P and S phase arrivals.

46 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Parameters

• data (SignalData object) – Light class encapsulating data returned by an archive
query.

• log (bool) – Calculate log(onset) if True, otherwise calculate the raw onset.

• run –

gaussian_halfwidth(phase)
Return the phase-appropriate Gaussian half-width estimate based on the short-term average window
length.

Parameters phase ({'P', 'S'}) – Seismic phase for which to serve the estimate.

onset_centred
Handle deprecated onset_centred kwarg / attribute

post_pad
Post-pad is determined as a function of the max traveltime in the grid and the onset windows

pre_pad
Pre-pad is determined as a function of the onset windows

quakemigrate.signal.onsets.stalta.pre_process(sig, sampling_rate, lc, hc, order=2)
Detrend raw seismic data and apply cosine taper and zero phase-shift Butterworth band-pass filter.

Parameters

• sig (array-like) – Data signal to be pre-processed.

• sampling_rate (int) – Number of samples per second, in Hz.

• lc (float) – Lowpass frequency of band-pass filter, in Hz.

• hc (float) – Highpass frequency of band-pass filter, in Hz.

• order (int, optional) – Number of filter corners. NOTE: two-pass filter effec-
tively doubles the number of corners.

Returns fsig – Filtered seismic data.

Return type array-like

Raises NyquistException – If the high-cut filter specified for the bandpass filter is higher
than the Nyquist frequency of the Waveform.signal data.

quakemigrate.signal.onsets.stalta.sta_lta_centred(a, nsta, nlta)
Calculates the ratio of the average signal in a short-term (signal) window to a preceding long-term (noise)
window. STA/LTA value is assigned to the end of the LTA / start of the STA.

Parameters

• a (array-like) – Signal array

• nsta (int) – Number of samples in short-term window

• nlta (int) – Number of samples in long-term window

Returns sta / lta – Ratio of short term average window to a preceding long term average window.
STA/LTA value is assigned to end of LTA window / start of STA window – “centred”

Return type array-like

quakemigrate.signal.onsets.stalta.sta_lta_onset(fsig, stw, ltw, position, log)
Calculate STA/LTA onset (characteristic) function from pre-processed seismic data.

5.3. Source code 47

QuakeMigrate, Release 1.0.0

Parameters

• fsig (array-like) – Filtered (pre-processed) data signal to be used to generate an
onset function.

• stw (int) – Short term window length (# of samples).

• ltw (int) – Long term window length (# of samples)

• position (str) –

“centred”: Compute centred STA/LTA (STA window is preceded by LTA window;
value is assigned to end of LTA window / start of STA window) or:

”classic”: classic STA/LTA (STA window is within LTA window; value is assigned
to end of STA & LTA windows).

Centred gives less phase-shifted (late) onset function, and is closer to a Gaussian approx-
imation, but is far more sensitive to data with sharp offsets due to instrument failures. We
recommend using classic for detect() and centred for locate() if your data quality allows
it. This is the default behaviour; override by setting self.onset_centred.

• log (bool) – Will return log(onset) if True, otherwise it will return the raw onset.

Returns onset – onset_raw or log(onset_raw); both are clipped between 0.8 and infinity.

Return type array-like

quakemigrate.signal.pickers

The quakemigrate.pickersmodule handles the picking of seismic phases. The default method makes the phase
picks by fitting a 1-D Gaussian to the Onset function.

Feel free to contribute more phase picking methods!

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

quakemigrate.signal.pickers.base

A simple abstract base class with method stubs enabling simple modification of QuakeMigrate to use custom phase
picking methods that remain compatible with the core of the package.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.pickers.base.PhasePicker(**kwargs)
Bases: abc.ABC

Abstract base class providing a simple way of modifying the default picking function in QuakeMigrate.

plot_picks
Toggle plotting of phase picks.

Type bool

pick_phases()
Abstract method stub providing interface with QuakeMigrate scan.

48 Chapter 5. Contents:

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

write(event_uid, phase_picks, output)
Outputs phase picks to file.

plot()
Method stub for phase pick plotting.

pick_phases()
Method stub for phase picking.

plot()
Method stub for phase pick plotting.

write(run, event_uid, phase_picks)
Write phase picks to a new .picks file.

Parameters

• event_uid (str) – Unique identifier for the event.

• phase_picks (pandas DataFrame object) –

Phase pick times with columns: [“Name”, “Phase”, ”ModelledTime”, “Pick-
Time”, “PickError”, “SNR”]

Each row contains the phase pick from one station/phase.

• output (QuakeMigrate input/output control object) – Contains
useful methods controlling output for the scan.

quakemigrate.signal.pickers.gaussian

The default seismic phase picking class - fits a 1-D Gaussian to the calculated onset functions.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.pickers.gaussian.GaussianPicker(onset=None,
**kwargs)

Bases: quakemigrate.signal.pickers.base.PhasePicker

This class details the default method of making phase picks shipped with QuakeMigrate, namely fitting a 1-D
Gaussian function to the STA/LTA onset function trace for each station.

phase_picks

“GAU_P” [array-like] Numpy array stack of Gaussian pick info (each as a dict) for P phase

“GAU_S” [array-like] Numpy array stack of Gaussian pick info (each as a dict) for S phase

Type dict

pick_threshold
Picks will only be made if the onset function exceeds this percentile of the noise level (average amplitude
of onset function outside pick windows). Recommended starting value: 1.0

Type float (between 0 and 1)

plot_picks
Toggle plotting of phase picks.

Type bool

5.3. Source code 49

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

pick_phases(data, lut, event, event_uid, output)
Picks phase arrival times for located earthquakes by fitting a 1-D Gaussian function to the P and S onset
functions

DEFAULT_GAUSSIAN_FIT = {'PickValue': -1, 'popt': 0, 'xdata': 0, 'xdata_dt': 0}

fraction_tt
Handler for deprecated attribute ‘fraction_tt’

pick_phases(event, lut, run)
Picks phase arrival times for located earthquakes.

Parameters

• event (Event object) – Contains pre-processed waveform data on which to perform
picking, the event location, and a unique identifier.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

• run (Run object) – Light class encapsulating i/o path information for a given run.

Returns

• event (Event object) – Event object provided to pick_phases(), but now with phase
picks!

• picks (pandas.DataFrame) – DataFrame that contains the measured picks with
columns: [“Name”, “Phase”, “ModelledTime”, “PickTime”, “PickError”, “SNR”]
Each row contains the phase pick from one station/phase.

plot(event, lut, picks, ttimes, run)
Plot figure showing the filtered traces for each data component and the characteristic functions calculated
from them (P and S) for each station. The search window to make a phase pick is displayed, along with
the dynamic pick threshold (defined as a percentile of the background noise level), the phase pick time
and its uncertainty (if made) and the Gaussian fit to the characteristic function.

Parameters event_uid (str, optional) – Earthquake UID string; for subdirectory
naming within directory {run_path}/traces/

quakemigrate.signal.local_mag

The quakemigrate.local_mag extension module handles the calculation of local magnitudes from Wood-
Anderson simulated waveforms.

Warning: The local_mag modules are an ongoing work in progress. We hope to

continue to extend their functionality, which may result in some API changes. If you have comments or suggestions,
please contact the QuakeMigrate developers

at quakemigrate.developers@gmail.com , or submit an issue on GitHub.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

50 Chapter 5. Contents:

mailto:quakemigrate.developers@gmail.com
https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

quakemigrate.signal.local_mag.local_mag

Module containing methods to calculate the local magnitude for an event located by QuakeMigrate.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.local_mag.LocalMag(amp_params, mag_params,
plot_amplitudes=True)

Bases: object

QuakeMigrate extension class for calculating local magnitudes.

Provides functions for measuring amplitudes of earthquake waveforms and using these to calculate local mag-
nitudes.

Parameters

• amp_params (dict) – All keys are optional, including: pre_filt : tuple of floats

Pre-filter to apply during the instrument response removal. E.g. (0.03, 0.05, 30.,
35.) - all in Hz. (Default None)

water_level [float] Water level to use in instrument response removal. (Default 60)

signal_window [float] Length of S-wave signal window, in addition to the time window
associated with the marginal_window and traveltime uncertainty. (Default 0 s)

noise_window [float] Length of the time window before the P-wave signal window in
which to measure the noise amplitude. (Default 10 s)

noise_measure [{“RMS”, “STD”}] Method by which to measure the noise amplitude;
root-mean-quare or standard deviation of the signal. (Default “RMS”)

loc_method [{“spline”, “gaussian”, “covariance”}] Which event location estimate to
use. (Default “spline”)

remove_full_response [bool] Whether to remove the full response (including the effect
of digital FIR filters) or just the instrument transform function (as defined by the
PolesZeros Response Stage. Significantly slower. (Default False)

highpass_filter [bool] Whether to apply a highpass filter to the data before measuring
amplitudes. (Default False)

highpass_freq [float] High-pass filter frequency. Required if highpass_filter is True.

bandpass_filter [bool] Whether to apply a band-pass filter before measuring amplitudes.
(Default: False)

bandpass_lowcut [float] Band-pass filter low-cut frequency. Required if bandpass_filter
is True.

bandpass_highcut [float] Band-pass filter high-cut frequency. Required if band-
pass_filter is True.

filter_corners [int] Number of corners for the chosen filter. Default: 4.

prominence_multiplier [float] To set a prominence filter in the peak-finding algorithm.
(Default 0. = off). NOTE: not recommended for use in combination with a filter; filter
gain corrections can lead to spurious results. Please see the scipy.signal.find_peaks
documentation for further guidance.

• mag_params (dict) – Required keys: A0 : str or func

5.3. Source code 51

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

Name of the attenuation function to use. Available options include {“Hutton-
Boore”, “keir2006”, “UK”, . . . }. Alternatively specify a function which returns
the attenuation factor at a specified (epicentral or hypocentral) distance. (Default
“Hutton-Boore”)

All other keys are optional, including: station_corrections : dict {str : float}

Dictionary of trace_id : magnitude-correction pairs. (Default None)

amp_feature [{“S_amp”, “P_amp”}] Which phase amplitude measurement to use to
calculate local magnitude. (Default “S_amp”)

amp_multiplier [float] Factor by which to multiply all measured amplitudes.

use_hyp_dist [bool, optional] Whether to use the hypocentral distance instead of the
epicentral distance in the local magnitude calculation. (Default False)

trace_filter [regex expression] Expression by which to select traces to use for the
mean_magnitude calculation. E.g. ‘.*H[NE]$’. (Default None)

station_filter [list of str] List of stations to exclude from the mean_magnitude calcula-
tion. E.g. [“KVE”, “LIND”]. (Default None)

dist_filter [float or False] Whether to only use stations less than a specified (epicentral or
hypocentral) distance from an event in the mean_magnitude() calculation. Distance
in kilometres. (Default False)

pick_filter [bool] Whether to only use stations where at least one phase was picked by
the autopicker in the mean_magnitude calculation. (Default False)

noise_filter [float] Factor by which to multiply the measured noise amplitude before
excluding amplitude observations below the noise level. (Default 1.)

weighted_mean [bool] Whether to do a weighted mean of the magnitudes when calcu-
lating the mean_magnitude. (Default False)

• plot_amplitudes (bool, optional) – Plot amplitudes vs. distance plot for each
event. (Default True)

amp
The Amplitude object for this instance of LocalMag. Contains functions to measure Wood-Anderson
corrected displacement amplitudes for an event.

Type Amplitude object

mag
The Magnitude object for this instance of LocalMag. Contains functions to calculate magnitudes from
Wood-Anderson corrected displacement amplitudes, and to combine them into a single magnitude esti-
mate for the event.

Type Magnitude object

calc_magnitude(event, lut, run)

calc_magnitude(event, lut, run)
Wrapper function to calculate the local magnitude of an event by first making Wood-Anderson corrected
displacement amplitude measurements on each trace, then calculating magnitudes from these individual
measurements, and a network-averaged (weighted) mean magnitude estimate and associated uncertainty.

Additional functionality includes calculating an r^2 fit of the predicted amplitude with distance curve to
the observed amplitudes, and an associated plot of amplitudes vs. distance.

Parameters

52 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

• event (Event object) – Light class encapsulating waveform data, onset, pick and
location information for a given event.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

• run (Run object) – Light class encapsulating i/o path information for a given run.

Returns

• event (Event object) – Light class encapsulating waveform data, onset, pick and lo-
cation information for a given event. Now also contains local magnitude information.

• mag (float) – Network-averaged local magnitude estimate for this event.

quakemigrate.signal.local_mag.amplitude

Module containing methods to measure Wood-Anderson corrected waveform amplitudes to be used for local magni-
tude calculation.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.amplitude.Amplitude(amplitude_params={})
Bases: object

Part of the QuakeMigrate LocalMag class; measures Wood-Anderson corrected waveform amplitudes to be used
for local magnitude calculation.

Simulates the Wood-Anderson waveforms using a user-supplied set of response removal parameters, then mea-
sures the maximum peak-to-trough amplitude in time windows around the P and S phase arrivals. These win-
dows are calculated from the phase pick times from the autopicker, if available, or from the modelled pick times.
The length of the S-wave signal window is calculated according to a user-specified signal_window parameter.

The user may optionally specify a filter to apply to the waveforms before amplitudes are measured, in order
(for example) to reduce the impact of high-amplitude noise associated with the oceanic microseisms on the
measurement of low-amplitude wavetrains associated with microseismic events. Note this will generally result
in an underestimate of the true earthquake waveform amplitude, even when the filter gain is corrected for.

A measurement of the signal amplitude in a window preceding the P-wave arrival is used to characterise the
“noise” amplitude. This can be used to filter out null observations, and to provide an estimate of the uncertainty
on the max amplitude measurements contributed by extraneous noise.

pre_filt
Pre-filter to apply during the instrument response removal. E.g. (0.03, 0.05, 30., 35.) - all in Hz. (Default
None)

Type tuple of floats

water_level
Water level to use in instrument response removal. (Default 60.)

Type float

signal_window
Length of S-wave signal window, in addition to the time window associated with the marginal_window
and traveltime uncertainty. (Default 0 s)

Type float

5.3. Source code 53

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

noise_window
Length of the time window before the P-wave signal window in which to measure the noise amplitude.
(Default 5 s)

Type float

noise_measure
Method by which to measure the noise amplitude; root-mean-quare or standard deviation of the signal.
(Default “RMS”)

Type {“RMS”, “STD”}

loc_method
Which event location estimate to use. (Default “spline”)

Type {“spline”, “gaussian”, “covariance”}

remove_full_response
Whether to remove the full response (including the effect of digital FIR filters) or just the instrument
transform function (as defined by the PolesZeros Response Stage). Significantly slower. (Default False)

Type bool

highpass_filter
Whether to apply a high-pass filter before measuring amplitudes. (Default False)

Type bool

highpass_freq
High-pass filter frequency. Required if highpass_filter is True.

Type float

bandpass_filter
Whether to apply a band-pass filter before measuring amplitudes. (Default False)

Type bool

bandpass_lowcut
Band-pass filter low-cut frequency. Required if bandpass_filter is True.

Type float

bandpass_highcut
Band-pass filter high-cut frequency. Required if bandpass_filter is True.

Type float

filter_corners
number of corners for the chosen filter. (Default 4)

Type int

prominence_multiplier
To set a prominence filter in the peak-finding algorithm. (Default 0. = off) NOTE: not recommended
for use in combination with a filter; filter gain corrections can lead to spurious results. Please see the
scipy.signal.find_peaks documentation for further guidance.

Type float

get_amplitudes(event, lut)

Raises AttributeError – If both highpass_filter and bandpass_filter are selected, or if the user
selects to apply a filter but does not provide the relevant frequencies.

54 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

get_amplitudes(event, lut)
Measure phase amplitudes for an event.

Parameters

• event (Event object) – Light class encapsulating waveform data, onset, pick and
location information for a given event.

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, com-
puted for some pre-defined velocity model.

Returns

amplitudes – P- and S-wave amplitude measurements for each component of each station
in the station file. Columns:

epi_dist [float] Epicentral distance between the station and the event hypocentre.

z_dist [float] Vertical distance between the station and the event hypocentre.

P_amp [float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres.

P_freq [float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time of the max peak-to-trough amplitude.

P_time [obspy.UTCDateTime object] Approximate time of amplitude observa-
tion (halfway between peak and trough times).

S_amp [float] As for P, but in the S wave signal window.

S_freq [float] As for P.

S_time [obspy.UTCDateTime object] As for P.

Noise_amp [float] An estimate of the signal amplitude in the noise window. In
millimetres.

is_picked [bool] Whether at least one of the phase arrivals was picked by the
autopicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

Return type pandas.DataFrame object

quakemigrate.signal.local_mag.magnitude

Module that supplies functions to calculate magnitudes from observations of trace amplitudes, earthquake location,
station locations, and an estimated attenuation curve for the region of interest.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.local_mag.magnitude.Magnitude(magnitude_params={})
Bases: object

Part of the QuakeMigrate LocalMag class; calculates local magnitudes from Wood-Anderson corrected wave-
form amplitude measurements.

Takes waveform amplitude measurements from the LocalMag Amplitude class, and from these calculates local
magnitude estimates using a local magnitude attenuation function. Magnitude corrections for individual stations
and channels thereof can be applied, if provided.

5.3. Source code 55

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

Individual estimates are then combined to calculate a network-averaged (weighted) mean local magnitude for
the event. Also includes the function to measure the r-squared statistic assessing the goodness of fit between
the predicted amplitude with distance from the nework-averaged local magnitude for the event and chosen at-
tenuation function, and the observed amplitudes. This, provides a tool to distinguish between real microseismic
events and artefacts.

A summary plot illustrating the amplitude observations, their uncertainties, and the predicted amplitude with
distance for the network- averaged local magnitude (and its uncertainties) can optionally be output.

A0
Name of the attenuation function to use. Available options include {“Hutton-Boore”, “keir2006”, “UK”,
. . . }. Alternatively specify a function which returns the attenuation factor at a specified (epicentral or
hypocentral) distance. (Default “Hutton-Boore”)

Type str or func

use_hyp_dist
Whether to use the hypocentral distance instead of the epicentral distance in the local magnitude calcula-
tion. (Default False)

Type bool, optional

amp_feature
Which phase amplitude measurement to use to calculate local magnitude. (Default “S_amp”)

Type {“S_amp”, “P_amp”}

station_corrections
Dictionary of trace_id : magnitude-correction pairs. (Default None)

Type dict {str : float}

amp_multiplier
Factor by which to multiply all measured amplitudes.

Type float

weighted_mean
Whether to use a weighted mean to calculate the network-averaged local magnitude estimate for the event.
(Default False)

Type bool

trace_filter
Expression by which to select traces to use for the mean_magnitude calculation. E.g. “.*H[NE]$” .
(Default None)

Type regex expression

noise_filter
Factor by which to multiply the measured noise amplitude before excluding amplitude observations below
the noise level. (Default 1.)

Type float

station_filter
List of stations to exclude from the mean_magnitude calculation. E.g. [“KVE”, “LIND”]. (Default None)

Type list of str

dist_filter
Whether to only use stations less than a specified (epicentral or hypocentral) distance from an event in the
mean_magnitude() calculation. Distance in kilometres. (Default False)

56 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Type float or False

pick_filter
Whether to only use stations where at least one phase was picked by the autopicker in the mean_magnitude
calculation. (Default False)

Type bool

calculate_magnitudes(amplitudes)

mean_magnitude(magnitudes)

plot_amplitudes(event, run)

Raises

• AttributeError – If the user does not specify an A0 attenuation curve.

• ValueError – If the user specifies an invalid A0 attenuation curve.

calculate_magnitudes(amplitudes)
Calculate magnitude estimates from amplitude measurements on individual stations / components.

Parameters amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measure-
ments for each component of each station in the station file. Columns:

epi_dist [float] Epicentral distance between the station and the event hypocentre.

z_dist [float] Vertical distance between the station and the event hypocentre.

P_amp [float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres.

P_freq [float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time of the max peak-to-trough amplitude.

P_time [obspy.UTCDateTime object] Approximate time of amplitude observa-
tion (halfway between peak and trough times).

S_amp [float] As for P, but in the S wave signal window.

S_freq [float] As for P.

S_time [obspy.UTCDateTime object] As for P.

Noise_amp [float] An estimate of the signal amplitude in the noise window. In
millimetres.

is_picked [bool] Whether at least one of the phase arrivals was picked by the
autopicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

Returns

magnitudes – The original amplitudes DataFrame, with columns containing the calcu-
lated magnitude and an associated error now added. Columns = [“epi_dist”, “z_dist”,
“P_amp”, “P_freq”, “P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”]

Index = Trace ID (see obspy.Trace.id) Additional fields: ML : float

Magnitude calculated from the chosen amplitude measurement, using the speci-
fied attenuation curve and station_corrections.

5.3. Source code 57

QuakeMigrate, Release 1.0.0

ML_Err [float] estimate of the error on the calculated magnitude, based on potential
errors in the maximum amplitude measurement according to the measured noise am-
plitude.

Return type pandas.DataFrame object

Raises AttributeError – If A0 attenuation correction is not specified.

mean_magnitude(magnitudes)
Calculate the network-averaged local magnitude for an event based on the magnitude estimates calculated
from amplitude measurements made on each component of each station.

The user may specify distance, station, channel and a number of other filters to restrict which observations
are included in this best estimate of the local magnitude of the event.

Parameters magnitudes (pandas.DataFrame) – Contains P- and S-wave amplitude mea-
surements for each component of each station in the station file, and local magnitude esti-
mates calculated from them (output by calculate_magnitudes()). Note that the amplitude
observations are raw, but the ML estimates derived from them include station corrections,
if provided. Columns:

epi_dist [float] Epicentral distance between the station and the event hypocentre.

z_dist [float] Vertical distance between the station and the event hypocentre.

P_amp [float] Half maximum peak-to-trough amplitude in the P signal window.
In millimetres.

P_freq [float] Approximate frequency of the maximum amplitude P-wave signal.
Calculated from the peak-to-trough time of the max peak-to-trough amplitude.

P_time [obspy.UTCDateTime object] Approximate time of amplitude observa-
tion (halfway between peak and trough times).

S_amp [float] As for P, but in the S wave signal window.

S_freq [float] As for P.

S_time [obspy.UTCDateTime object] As for P.

Noise_amp [float] An estimate of the signal amplitude in the noise window. In
millimetres.

is_picked [bool] Whether at least one of the phase arrivals was picked by the
autopicker.

ML [float] Magnitude calculated from the chosen amplitude measurement, using
the specified attenuation curve and station_corrections.

ML_Err [float] estimate of the error on the calculated magnitude, based on po-
tential errors in the maximum amplitude measurement according to the mea-
sured noise amplitude.

Index = Trace ID (see obspy.Trace object property ‘id’)

Returns

• mean_mag (float or NaN) – Network-averaged local magnitude estimate for the
event. Mean (or weighted mean) of the magnitude estimates calculated from each
individual channel after optionally removing some observations based on trace ID,
distance, etcetera.

58 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

• mean_mag_err (float or NaN) – Standard deviation (or weighted standard deviation)
of the magnitude estimates calculated from individual channels which contributed to
the calculation of the (weighted) mean magnitude.

• mag_r_squared (float or NaN) – r-squared statistic describing the fit of the amplitude
vs. distance curve predicted by the calculated mean_mag and chosen attenuation
model to the measured amplitude observations. This is intended to be used to help
discriminate between ‘real’ events, for which the predicted amplitude vs. distance
curve should provide a good fit to the observations, from artefacts, which in general
will not.

plot_amplitudes(magnitudes, event, run, unit_conversion_factor, noise_measure=’RMS’)
Plot a figure showing the measured amplitude with distance vs. predicted amplitude with distance derived
from mean_mag and the chosen attenuation model.

The amplitude observations (both for noise and signal amplitudes) are corrected according to the same
station corrections that were used in calculating the individual local magnitude estimates that were used
to calculate the network-averaged local magnitude for the event.

Parameters

• magnitudes (pandas.DataFrame object) – Contains P- and S-wave amplitude mea-
surements for each component of each station in the station file, and local magnitude
estimates calculated from them (output by calculate_magnitudes()). Note that the
amplitude observations are raw, but the ML estimates derived from them include sta-
tion corrections, if provided. Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”,
“P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”, “ML”, “ML_Err”,
“Noise_Filter”, “Trace_Filter”, “Station_Filter”, “Dist_Filter”, “Dist”, “Used”]

• event (Event object) – Light class encapsulating waveform data, onset, pick, loca-
tion and local magnitude information for a given event.

• run (Run object) – Light class encapsulating i/o path information for a given run.

• unit_conversion_factor (float) – A conversion factor based on the lookup
table grid projection, used to ensure the location uncertainties have units of kilome-
tres.

quakemigrate.signal.scan

Module to perform core QuakeMigrate functions: detect() and locate().

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.scan.QuakeScan(archive, lut, onset, run_path, run_name,
**kwargs)

Bases: object

QuakeMigrate scanning class.

Provides an interface for the wrapped compiled C functions, used to perform the continuous scan (detect) or
refined event migrations (locate).

Parameters

• archive (Archive object) – Details the structure and location of a data archive and
provides methods for reading data from file.

5.3. Source code 59

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

• lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

• onset (Onset object) – Provides callback methods for calculation of onset functions.

• run_path (str) – Points to the top level directory containing all input files, under
which the specific run directory will be created.

• run_name (str) – Name of the current QuakeMigrate run.

• kwargs (**dict) – See QuakeScan Attributes for details. In addition to these:

continuous_scanmseed_write
Option to continuously write the .scanmseed file output by detect() at the end of every time step. Default
behaviour is to write in day chunks where possible. Default: False.

Type bool

cut_waveform_format
File format used when writing waveform data. We support any format also supported by ObSpy -
“MSEED” (default), “SAC”, “SEGY”, “GSE2”.

Type str, optional

log
Toggle for logging. If True, will output to stdout and generate a log file. Default is to only output to
stdout.

Type bool, optional

loglevel
Toggle to set the logging level: “debug” will print out additional diagnostic information to the log and
stdout. (Default “info”)

Type {“info”, “debug”}, optional

mags
Provides methods for calculating local magnitudes, performed during locate.

Type LocalMag object, optional

marginal_window
Half-width of window centred on the maximum coalescence time. The 4-D coalescence functioned is
marginalised over time across this window such that the earthquake location and associated uncertainty
can be appropriately calculated. It should be an estimate of the time uncertainty in the earthquake origin
time, which itself is some combination of the expected spatial uncertainty and uncertainty in the seismic
velocity model used. Default: 2 seconds.

Type float, optional

picker
Provides callback methods for phase picking, performed during locate.

Type PhasePicker object, optional

plot_event_summary
Plot event summary figure - see quakemigrate.plot for more details. Default: True.

Type bool, optional

plot_event_video
Plot coalescence video for each located earthquake. Default: False.

Type bool, optional

60 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

post_pad
Additional amount of data to read in after the timestep, used to ensure the correct coalescence is calculated
at every sample.

Type float

pre_pad
Additional amount of data to read in before the timestep, used to ensure the correct coalescence is calcu-
lated at every sample.

Type float

run
Light class encapsulating i/o path information for a given run.

Type Run object

sampling_rate
Desired sampling rate of input data; sampling rate at which to compute the coalescence function. Default:
50 Hz.

Type int, optional

threads
The number of threads for the C functions to use on the executing host. Default: 1 thread.

Type int, optional

timestep
Length (in seconds) of timestep used in detect(). Note: total detect run duration should be divisible by
timestep. Increasing timestep will increase RAM usage during detect, but will slightly speed up overall
detect run. Default: 120 seconds.

Type float, optional

write_cut_waveforms
Write raw cut waveforms for all data found in the archive for each event located by locate(). Default:
False. Note: this data has not been processed or quality-checked!

Type bool, optional

xy_files
Path to comma-separated value file (.csv) containing a series of coordinate files to plot. Columns: [“File”,
“Color”, “Linewidth”, “Linestyle”], where “File” is the absolute path to the file containing the coordinates
to be plotted. E.g: “/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with #
will be treated as a comment - this can be used to include references. See the Volcanotectonic_Iceland
example XY_files for a template.

Note: Do not include a header line in either file.

Type str, optional

+++ TO BE REMOVED TO ARCHIVE CLASS +++

pre_cut
Specify how long before the event origin time to cut the waveform data from

Type float, optional

5.3. Source code 61

QuakeMigrate, Release 1.0.0

post_cut
Specify how long after the event origin time to cut the waveform data to

Type float, optional

+++ TO BE REMOVED TO ARCHIVE CLASS +++

detect(starttime, endtime)
Core detection method – compute decimated 3-D coalescence continuously throughout entire time period;
output as .scanmseed (in mSEED format).

locate(starttime, endtime) or locate(file)
Core locate method – compute 3-D coalescence over short time window around candidate earthquake
triggered from coastream; output location & uncertainties (.event file), phase picks (.picks file), plus
multiple optional plots / data for further analysis and processing.

Raises

• OnsetTypeError – If an object is passed in through the onset argument that does not
derive from the Onset base class.

• PickerTypeError – If an object is passed in through the picker argument that does
not derive from the PhasePicker base class.

• RuntimeError – If the user does not supply the locate function with valid arguments.

• TimeSpanException – If the user supplies a starttime that is after the endtime.

• NoMagObjectError – If the user selects to calculate magnitudes but does not provide
a LocalMag object.

detect(starttime, endtime)
Scans through continuous data calculating coalescence on a (decimated) 3-D grid by back-migrating onset
(characteristic) functions.

Parameters

• starttime (str) – Timestamp from which to run continuous scan (detect).

• endtime (str) – Timestamp up to which to run continuous scan (detect). Note: the
last sample returned will be that which immediately precedes this timestamp.

locate(starttime=None, endtime=None, trigger_file=None)
Re-computes the 3-D coalescence on an undecimated grid for a short time window around each candidate
earthquake triggered from the (decimated) continuous detect scan. Calculates event location and uncer-
tainties, makes phase arrival picks, plus multiple optional plotting / data outputs for further analysis and
processing.

Parameters

• starttime (str, optional) – Timestamp from which to include events in the
locate scan.

• endtime (str, optional) – Timestamp up to which to include events in the
locate scan.

• trigger_file (str, optional) – File containing triggered events to be lo-
cated.

n_cores
Handler for deprecated attribute name ‘n_cores’

62 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

sampling_rate
Get sampling_rate

time_step
Handler for deprecated attribute name ‘time_step’

quakemigrate.signal.trigger

Module to perform the trigger stage of QuakeMigrate.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

class quakemigrate.signal.trigger.Trigger(lut, run_path, run_name, **kwargs)
Bases: object

QuakeMigrate triggering class.

Triggers candidate earthquakes from the maximum coalescence through time data output by the decimated
detect scan, ready to be run through locate().

Parameters

• lut (LUT object) – Contains the traveltime lookup tables for P- and S-phases, computed
for some pre-defined velocity model.

• run_path (str) – Points to the top level directory containing all input files, under
which the specific run directory will be created.

• run_name (str) – Name of the current QuakeMigrate run.

• kwargs (**dict) – See Trigger Attributes for details. In addition to these: log : bool,
optional

Toggle for logging. If True, will output to stdout and generate a log file. Default
is to only output to stdout.

loglevel [{“info”, “debug”}, optional] Toggle to set the logging level: “debug” will print
out additional diagnostic information to the log and stdout. (Default “info”)

trigger_name [str] Optional name of a sub-run - useful when testing different trigger
parameters, for example.

mad_window_length
Length of window within which to calculate the Median Average Deviation. Default: 3600 seconds (1
hour).

Type float, optional

mad_multiplier
A scaling factor for the MAD output to make the calculated MAD factor a consistent estimation of the
standard deviation of the distribution. Default: 1.4826, which is the appropriate scaling factor for a normal
distribution.

Type float, optional

marginal_window
Time window over which to marginalise the coalescence, making it solely a function of the spatial dimen-
sions. This should be an estimate of the time error, as derived from an estimate of the spatial error and
error in the velocity model. Default: 2 seconds.

5.3. Source code 63

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

Type float, optional

min_event_interval
Minimum time interval between triggered events. Must be at least twice the marginal window. Default: 4
seconds.

Type float, optional

normalise_coalescence
If True, triggering is performed on the maximum coalescence normalised by the mean coalescence value
in the 3-D grid. Default: False.

Type bool, optional

pad
Additional time padding to ensure events close to the starttime/endtime are not cut off and missed. De-
fault: 120 seconds.

Type float, optional

run
Light class encapsulating i/o path information for a given run.

Type Run object

static_threshold
Static threshold value above which to trigger candidate events.

Type float, optional

threshold_method
Toggle between a “static” threshold and a “dynamic” threshold, based on the Median Average Deviation.
Default: “static”.

Type str, optional

xy_files
Path to comma-separated value file (.csv) containing a series of coordinate files to plot. Columns: [“File”,
“Color”, “Linewidth”, “Linestyle”], where “File” is the absolute path to the file containing the coordinates
to be plotted. E.g: “/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate file should contain
coordinates only, with columns: [“Longitude”, “Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with #
will be treated as a comment - this can be used to include references. See the Volcanotectonic_Iceland
example XY_files for a template.

Note: Do not include a header line in either file.

Type str, optional

trigger(starttime, endtime, region=None, savefig=True)
Trigger candidate earthquakes from decimated detect scan results.

Raises

• ValueError – If min_event_interval < 2 * marginal_window.

• InvalidThresholdMethodException – If an invalid threshold method is passed
in by the user.

• TimeSpanException – If the user supplies a starttime that is after the endtime.

64 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

min_event_interval
Get and set the minimum event interval.

minimum_repeat
Handler for deprecated attribute name ‘minimum_repeat’.

trigger(starttime, endtime, region=None, savefig=True)
Trigger candidate earthquakes from decimated scan data.

Parameters

• starttime (str) – Timestamp from which to trigger.

• endtime (str) – Timestamp up to which to trigger.

• region (list of floats, optional) – Only write triggered events within
this region to the triggered events csv file (for use in locate.) Format is:

[Xmin, Ymin, Zmin, Xmax, Ymax, Zmax]

Units are longitude / latitude / metres (in positive-down frame).

• savefig (bool, optional) – Save triggered events figure (default) or open in-
teractive view.

Raises TimeSpanException – If starttime is after endtime.

quakemigrate.signal.trigger.calculate_mad(x, scale=1.4826)
Calculates the Median Absolute Deviation (MAD) of the input array x.

Parameters

• x (array-like) – Coalescence array in.

• scale (float, optional) – A scaling factor for the MAD output to make the cal-
culated MAD factor a consistent estimation of the standard deviation of the distribution.

Returns scaled_mad – Array of scaled mean absolute deviation values for the input array, x, scaled
to provide an estimation of the standard deviation of the distribution.

Return type array-like

quakemigrate.signal.trigger.chunks2trace(a, new_shape)
Create a trace filled with chunks of the same value.

a [array-like] Array of chunks.

new_shape [tuple of ints] (number of chunks, chunk_length)

b [array-like] Single array of values contained in a.

5.3.7 quakemigrate.util

Module that supplies various utility functions and classes.

copyright 2020, QuakeMigrate developers.

license GNU General Public License, Version 3 (https://www.gnu.org/licenses/gpl-3.0.html)

exception quakemigrate.util.ArchiveEmptyException
Bases: Exception

Custom exception to handle empty archive

5.3. Source code 65

https://www.gnu.org/licenses/gpl-3.0.html

QuakeMigrate, Release 1.0.0

exception quakemigrate.util.ArchiveFormatException
Bases: Exception

Custom exception to handle case where Archive.format is not set.

exception quakemigrate.util.ArchivePathStructureError(archive_format)
Bases: Exception

Custom exception to handle case where an invalid Archive path structure is selected.

exception quakemigrate.util.BadUpfactorException(trace)
Bases: Exception

Custom exception to handle case when the chosen upfactor does not create a trace with a sampling rate that can
be decimated to the target sampling rate

exception quakemigrate.util.ChannelNameException(trace)
Bases: Exception

Custom exception to handle case when waveform data header has channel names which do not conform to the
IRIS SEED standard.

exception quakemigrate.util.DataGapException
Bases: Exception

Custom exception to handle case when all data has gaps for a given timestep

class quakemigrate.util.DateFormatter(fmt, precision=3)
Bases: matplotlib.ticker.Formatter

Extend the matplotlib.ticker.Formatter class to allow for millisecond precision when formatting a tick (in days
since the epoch) with a ~datetime.datetime.strftime format string.

exception quakemigrate.util.InvalidThresholdMethodException
Bases: Exception

Custom exception to handle case when the user has not selected a valid threshold method.

exception quakemigrate.util.InvalidVelocityModelHeader(key)
Bases: Exception

Custom exception to handle incorrect header columns in station file

exception quakemigrate.util.MagsTypeError
Bases: Exception

Custom exception to handle case when an object has been provided to calculate magnitudes during locate, but it
isn’t supported.

exception quakemigrate.util.NoScanMseedDataException
Bases: Exception

Custom exception to handle case when no .scanmseed files can be found by read_coastream()

exception quakemigrate.util.NoStationAvailabilityDataException
Bases: Exception

Custom exception to handle case when no .StationAvailability files can be found by read_availability()

exception quakemigrate.util.NoTriggerFilesFound
Bases: Exception

Custom exception to handle case when no trigger files are found during locate. This can occur for one of two
reasons - an entirely invalid time period was used (i.e. one that does not overlap at all with a period of time for
which there exists TriggeredEvents.csv files) or an invalid run name was provided.

66 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

exception quakemigrate.util.NyquistException(freqmax, f_nyquist, tr_id)
Bases: Exception

Custom exception to handle the case where the specified filter has a lowpass corner above the signal Nyquist
frequency.

Parameters

• freqmax (float) – Specified lowpass frequency for filter

• f_nyquist (float) – Nyquist frequency for the relevant waveform data

• tr_id (str) – ID string for the Trace

exception quakemigrate.util.OnsetTypeError
Bases: Exception

Custom exception to handle case when the onset object passed to QuakeScan is not of the default type defined
in QuakeMigrate.

exception quakemigrate.util.PeakToTroughError(err)
Bases: Exception

Custom exception to handle case when amplitude._peak_to_trough_amplitude encounters an anomalous set of
peaks and troughs, so can’t calculate an amplitude.

exception quakemigrate.util.PickOrderException(event_uid, station, p_pick, s_pick)
Bases: Exception

Custom exception to handle the case when the pick for the P phase is later than the pick for the S phase.

exception quakemigrate.util.PickerTypeError
Bases: Exception

Custom exception to handle case when the phase picker object passed to QuakeScan is not of the default type
defined in QuakeMigrate.

exception quakemigrate.util.ResponseNotFoundError(e, tr_id)
Bases: Exception

Custom exception to handle the case where the provided response inventory doesn’t contain the response infor-
mation for a trace.

Parameters

• e (str) – Error message from ObsPy Inventory.get_response()

• tr_id (str) – ID string for the Trace for which the response cannot be found

exception quakemigrate.util.ResponseRemovalError(e, tr_id)
Bases: Exception

Custom exception to handle the case where the response removal was not successful.

Parameters

• e (str) – Error message from ObsPy Trace.remove_response() or Trace.simulate()

• tr_id (str) – ID string for the Trace for which the response cannot be removed

exception quakemigrate.util.StationFileHeaderException
Bases: Exception

Custom exception to handle incorrect header columns in station file

5.3. Source code 67

QuakeMigrate, Release 1.0.0

exception quakemigrate.util.TimeSpanException
Bases: Exception

Custom exception to handle case when the user has submitted a start time that is after the end time.

quakemigrate.util.decimate(trace, sr)
Decimate a trace to achieve the desired sampling rate, sr.

NOTE: data will be detrended and a cosine taper applied before decimation, in order to avoid edge effects when
applying the lowpass filter.

trace [obspy.Trace object] Trace to be decimated.

sr [int] Output sampling rate.

trace [obspy.Trace object] Decimated trace.

quakemigrate.util.gaussian_1d(x, a, b, c)
Create a 1-dimensional Gaussian function.

Parameters

• x (array-like) – Array of x values

• a (float / int) – Amplitude (height of Gaussian)

• b (float / int) – Mean (centre of Gaussian)

• c (float / int) – Sigma (width of Gaussian)

Returns f – 1-dimensional Gaussian function

Return type function

quakemigrate.util.gaussian_3d(nx, ny, nz, sgm)
Create a 3-dimensional Gaussian function.

Parameters

• nx (array-like) – Array of x values

• ny (array-like) – Array of y values

• nz (array-like) – Array of z values

• sgm (float / int) – Sigma (width of gaussian in all directions)

Returns f – 3-dimensional Gaussian function

Return type function

quakemigrate.util.logger(logstem, log, loglevel=’info’)
Simple logger that will output to both a log file and stdout.

Parameters

• logstem (str) – Filestem for log file.

• log (bool) – Toggle for logging - default is to only print information to stdout. If True,
will also create a log file.

• loglevel (str, optional) – Toggle for logging level - default is to print only
“info” messages to log. To print more detailed “debug” messages, set to “debug”.

quakemigrate.util.make_directories(run, subdir=None)
Make run directory, and optionally make subdirectories within it.

68 Chapter 5. Contents:

QuakeMigrate, Release 1.0.0

Parameters

• run (pathlib Path object) – Location of parent output directory, named by run
name.

• subdir (string, optional) – subdir to make beneath the run level.

quakemigrate.util.time2sample(time, sampling_rate)
Utility function to convert from seconds and sampling rate to number of samples.

Parameters

• time (float) – Time to convert

• sampling_rate (int) – Sampling rate of input data/sampling rate at which to com-
pute the coalescence function.

Returns out – Time that correpsonds to an integer number of samples at a specific sampling rate.

Return type int

quakemigrate.util.timeit(*args_, **kwargs_)
Function wrapper that measures the time elapsed during its execution.

quakemigrate.util.trim2sample(time, sampling_rate)
Utility function to ensure time padding results in a time that is an integer number of samples.

Parameters

• time (float) – Time to trim.

• sampling_rate (int) – Sampling rate of input data/sampling rate at which to com-
pute the coalescence function.

Returns out – Time that correpsonds to an integer number of samples at a specific sampling rate.

Return type int

quakemigrate.util.upsample(trace, upfactor)
Upsample a data stream by a given factor, prior to decimation. The upsampling is done using a linear interpola-
tion.

Parameters

• trace (obspy.Trace object) – Trace to be upsampled.

• upfactor (int) – Factor by which to upsample the data in trace.

Returns out – Upsampled trace.

Return type obpsy.Trace object

quakemigrate.util.wa_response(convert=’DIS2DIS’, obspy_def=True)
Generate a Wood Anderson response dictionary.

Parameters

• convert ({'DIS2DIS', 'VEL2VEL', ‘VEL2DIS'}) – Type of output to con-
vert between; determines the number of complex zeros used.

• obspy_def (bool, optional) – Use the ObsPy definition of the Wood Anderson
response (Default). Otherwise, use the IRIS/SAC definition.

Returns WOODANDERSON – Poles, zeros, sensitivity and gain of the Wood-Anderson torsion
seismograph.

Return type dict

5.3. Source code 69

QuakeMigrate, Release 1.0.0

70 Chapter 5. Contents:

Python Module Index

q
quakemigrate.core, 20
quakemigrate.core.lib, 20
quakemigrate.export, 21
quakemigrate.export.to_mfast, 22
quakemigrate.export.to_nlloc, 22
quakemigrate.export.to_obspy, 22
quakemigrate.export.to_snuffler, 23
quakemigrate.io, 23
quakemigrate.io.amplitudes, 24
quakemigrate.io.availability, 24
quakemigrate.io.core, 25
quakemigrate.io.cut_waveforms, 27
quakemigrate.io.data, 27
quakemigrate.io.scanmseed, 32
quakemigrate.io.triggered_events, 34
quakemigrate.lut, 34
quakemigrate.lut.create_lut, 35
quakemigrate.lut.lut, 36
quakemigrate.plot, 41
quakemigrate.plot.event, 42
quakemigrate.plot.phase_picks, 42
quakemigrate.plot.trigger, 43
quakemigrate.signal, 44
quakemigrate.signal.local_mag, 50
quakemigrate.signal.local_mag.amplitude,

53
quakemigrate.signal.local_mag.local_mag,

51
quakemigrate.signal.local_mag.magnitude,

55
quakemigrate.signal.onsets, 44
quakemigrate.signal.onsets.base, 44
quakemigrate.signal.onsets.stalta, 45
quakemigrate.signal.pickers, 48
quakemigrate.signal.pickers.base, 48
quakemigrate.signal.pickers.gaussian,

49
quakemigrate.signal.scan, 59

quakemigrate.signal.trigger, 63
quakemigrate.util, 65

71

QuakeMigrate, Release 1.0.0

72 Python Module Index

Index

A
A0 (quakemigrate.signal.local_mag.magnitude.Magnitude

attribute), 56
add_stream() (quakemigrate.io.data.WaveformData

method), 31
amp (quakemigrate.signal.local_mag.local_mag.LocalMag

attribute), 52
amp_feature (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

amp_multiplier (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 56

Amplitude (class in quakemi-
grate.signal.local_mag.amplitude), 53

append() (quakemigrate.io.scanmseed.ScanmSEED
method), 32

Archive (class in quakemigrate.io.data), 27
archive_path (quakemigrate.io.data.Archive at-

tribute), 28
ArchiveEmptyException, 65
ArchiveFormatException, 65
ArchivePathStructureError, 66
availability (quakemigrate.io.data.WaveformData

attribute), 30

B
BadUpfactorException, 66
bandpass_filter (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 54

bandpass_highcut (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

bandpass_lowcut (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

C
calc_magnitude() (quakemi-

grate.signal.local_mag.local_mag.LocalMag
method), 52

calculate_mad() (in module quakemi-
grate.signal.trigger), 65

calculate_magnitudes() (quakemi-
grate.signal.local_mag.magnitude.Magnitude
method), 57

calculate_onsets() (quakemi-
grate.signal.onsets.base.Onset method),
45

calculate_onsets() (quakemi-
grate.signal.onsets.stalta.STALTAOnset
method), 46

cell_count (quakemigrate.lut.lut.Grid3D attribute),
37

cell_size (quakemigrate.lut.lut.Grid3D attribute), 37
CentredSTALTAOnset (class in quakemi-

grate.signal.onsets.stalta), 45
ChannelNameException, 66
chunks2trace() (in module quakemi-

grate.signal.trigger), 65
ClassicSTALTAOnset (class in quakemi-

grate.signal.onsets.stalta), 46
compute_traveltimes() (in module quakemi-

grate.lut.create_lut), 35
continuous_scanmseed_write (quakemi-

grate.signal.scan.QuakeScan attribute), 60
coord2grid() (quakemigrate.lut.lut.Grid3D method),

37
coord_proj (quakemigrate.lut.lut.Grid3D attribute),

36
cut_waveform_format (quakemi-

grate.signal.scan.QuakeScan attribute),
60

D
DataGapException, 66

73

QuakeMigrate, Release 1.0.0

DateFormatter (class in quakemigrate.util), 66
decimate() (in module quakemigrate.util), 68
decimate() (quakemigrate.lut.lut.Grid3D method),

37, 38
DEFAULT_GAUSSIAN_FIT (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 50

detect() (quakemigrate.signal.scan.QuakeScan
method), 62

dist_filter (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 56

E
empty() (quakemigrate.io.scanmseed.ScanmSEED

method), 32, 33
endtime (quakemigrate.io.data.WaveformData at-

tribute), 30
event_summary() (in module quakemi-

grate.plot.event), 42

F
filter_corners (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 54

filtered_signal (quakemi-
grate.io.data.WaveformData attribute), 31

find_max_coa() (in module quakemigrate.core.lib),
20

format (quakemigrate.io.data.Archive attribute), 28
fraction_tt (quakemigrate.lut.lut.LUT attribute), 39
fraction_tt (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 50

G
gaussian_1d() (in module quakemigrate.util), 68
gaussian_3d() (in module quakemigrate.util), 68
gaussian_halfwidth() (quakemi-

grate.signal.onsets.base.Onset method),
45

gaussian_halfwidth() (quakemi-
grate.signal.onsets.stalta.STALTAOnset
method), 47

GaussianPicker (class in quakemi-
grate.signal.pickers.gaussian), 49

get_amplitudes() (quakemi-
grate.signal.local_mag.amplitude.Amplitude
method), 54

get_grid_extent() (quakemigrate.lut.lut.Grid3D
method), 38

get_real_waveforms() (quakemi-
grate.io.data.WaveformData method), 31

get_wa_waveform() (quakemi-
grate.io.data.WaveformData method), 31

Grid3D (class in quakemigrate.lut.lut), 36
grid_corners (quakemigrate.lut.lut.Grid3D at-

tribute), 36, 38
grid_extent (quakemigrate.lut.lut.Grid3D attribute),

38
grid_proj (quakemigrate.lut.lut.Grid3D attribute), 36
grid_xyz (quakemigrate.lut.lut.Grid3D attribute), 36,

38

H
highpass_filter (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 54

highpass_freq (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

I
index2coord() (quakemigrate.lut.lut.Grid3D

method), 37, 38
index2grid() (quakemigrate.lut.lut.Grid3D method),

37, 39
InvalidThresholdMethodException, 66
InvalidVelocityModelHeader, 66

L
ll_corner (quakemigrate.lut.lut.Grid3D attribute), 36
load() (quakemigrate.lut.lut.LUT method), 40
loc_method (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 54

LocalMag (class in quakemi-
grate.signal.local_mag.local_mag), 51

locate() (quakemigrate.signal.scan.QuakeScan
method), 62

log (quakemigrate.signal.scan.QuakeScan attribute), 60
logger() (in module quakemigrate.util), 68
logger() (quakemigrate.io.core.Run method), 25
loglevel (quakemigrate.io.core.Run attribute), 25
loglevel (quakemigrate.signal.scan.QuakeScan at-

tribute), 60
LUT (class in quakemigrate.lut.lut), 39

M
mad_multiplier (quakemi-

grate.signal.trigger.Trigger attribute), 63
mad_window_length (quakemi-

grate.signal.trigger.Trigger attribute), 63
mag (quakemigrate.signal.local_mag.local_mag.LocalMag

attribute), 52
Magnitude (class in quakemi-

grate.signal.local_mag.magnitude), 55

74 Index

QuakeMigrate, Release 1.0.0

mags (quakemigrate.signal.scan.QuakeScan attribute),
60

MagsTypeError, 66
make_directories() (in module quakemi-

grate.util), 68
marginal_window (quakemi-

grate.signal.scan.QuakeScan attribute),
60

marginal_window (quakemi-
grate.signal.trigger.Trigger attribute), 63

max_extent (quakemigrate.lut.lut.LUT attribute), 40
max_traveltime (quakemigrate.lut.lut.LUT at-

tribute), 39, 40
mean_magnitude() (quakemi-

grate.signal.local_mag.magnitude.Magnitude
method), 57, 58

migrate() (in module quakemigrate.core.lib), 21
min_event_interval (quakemi-

grate.signal.trigger.Trigger attribute), 64
minimum_repeat (quakemi-

grate.signal.trigger.Trigger attribute), 65

N
n_cores (quakemigrate.signal.scan.QuakeScan at-

tribute), 62
name (quakemigrate.io.core.Run attribute), 25
nlloc_obs() (in module quakemi-

grate.export.to_nlloc), 22
node_count (quakemigrate.lut.lut.Grid3D attribute),

37, 39
node_spacing (quakemigrate.lut.lut.Grid3D at-

tribute), 37, 39
noise_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

noise_measure (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

noise_window (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 53

normalise_coalescence (quakemi-
grate.signal.trigger.Trigger attribute), 64

NoScanMseedDataException, 66
NoStationAvailabilityDataException, 66
NoTriggerFilesFound, 66
NyquistException, 66

O
Onset (class in quakemigrate.signal.onsets.base), 44
onset_centred (quakemi-

grate.signal.onsets.stalta.STALTAOnset at-
tribute), 47

OnsetTypeError, 67

P
p_bp_filter (quakemi-

grate.signal.onsets.stalta.STALTAOnset at-
tribute), 46

p_onset_win (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 46

pad (quakemigrate.signal.trigger.Trigger attribute), 64
pad() (quakemigrate.signal.onsets.base.Onset method),

45
path (quakemigrate.io.core.Run attribute), 25
path_structure() (quakemigrate.io.data.Archive

method), 28
PeakToTroughError, 67
phase_picks (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 49

PhasePicker (class in quakemi-
grate.signal.pickers.base), 48

phases (quakemigrate.lut.lut.LUT attribute), 40
pick_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 57

pick_phases() (quakemi-
grate.signal.pickers.base.PhasePicker method),
48, 49

pick_phases() (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
method), 49, 50

pick_summary() (in module quakemi-
grate.plot.phase_picks), 42

pick_threshold (quakemi-
grate.signal.pickers.gaussian.GaussianPicker
attribute), 49

picker (quakemigrate.signal.scan.QuakeScan at-
tribute), 60

PickerTypeError, 67
PickOrderException, 67
plot() (quakemigrate.lut.lut.LUT method), 40
plot() (quakemigrate.signal.pickers.base.PhasePicker

method), 49
plot() (quakemigrate.signal.pickers.gaussian.GaussianPicker

method), 50
plot_amplitudes() (quakemi-

grate.signal.local_mag.magnitude.Magnitude
method), 57, 59

plot_event_summary (quakemi-
grate.signal.scan.QuakeScan attribute),
60

plot_event_video (quakemi-
grate.signal.scan.QuakeScan attribute),
60

plot_picks (quakemi-
grate.signal.pickers.base.PhasePicker at-

Index 75

QuakeMigrate, Release 1.0.0

tribute), 48
plot_picks (quakemi-

grate.signal.pickers.gaussian.GaussianPicker
attribute), 49

position (quakemigrate.signal.onsets.stalta.STALTAOnset
attribute), 46

post_cut (quakemigrate.signal.scan.QuakeScan at-
tribute), 61

post_pad (quakemigrate.io.data.WaveformData
attribute), 30

post_pad (quakemigrate.signal.onsets.base.Onset at-
tribute), 45

post_pad (quakemigrate.signal.onsets.stalta.STALTAOnset
attribute), 47

post_pad (quakemigrate.signal.scan.QuakeScan at-
tribute), 60

pre_cut (quakemigrate.signal.scan.QuakeScan at-
tribute), 61

pre_filt (quakemigrate.signal.local_mag.amplitude.Amplitude
attribute), 53

pre_pad (quakemigrate.io.data.WaveformData at-
tribute), 30

pre_pad (quakemigrate.signal.onsets.base.Onset at-
tribute), 45

pre_pad (quakemigrate.signal.onsets.stalta.STALTAOnset
attribute), 46, 47

pre_pad (quakemigrate.signal.scan.QuakeScan at-
tribute), 61

pre_process() (in module quakemi-
grate.signal.onsets.stalta), 47

precision (quakemigrate.lut.lut.Grid3D attribute),
37, 39

prominence_multiplier (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

Q
quakemigrate.core (module), 20
quakemigrate.core.lib (module), 20
quakemigrate.export (module), 21
quakemigrate.export.to_mfast (module), 22
quakemigrate.export.to_nlloc (module), 22
quakemigrate.export.to_obspy (module), 22
quakemigrate.export.to_snuffler (module),

23
quakemigrate.io (module), 23
quakemigrate.io.amplitudes (module), 24
quakemigrate.io.availability (module), 24
quakemigrate.io.core (module), 25
quakemigrate.io.cut_waveforms (module), 27
quakemigrate.io.data (module), 27
quakemigrate.io.scanmseed (module), 32
quakemigrate.io.triggered_events (mod-

ule), 34

quakemigrate.lut (module), 34
quakemigrate.lut.create_lut (module), 35
quakemigrate.lut.lut (module), 36
quakemigrate.plot (module), 41
quakemigrate.plot.event (module), 42
quakemigrate.plot.phase_picks (module), 42
quakemigrate.plot.trigger (module), 43
quakemigrate.signal (module), 44
quakemigrate.signal.local_mag (module), 50
quakemigrate.signal.local_mag.amplitude

(module), 53
quakemigrate.signal.local_mag.local_mag

(module), 51
quakemigrate.signal.local_mag.magnitude

(module), 55
quakemigrate.signal.onsets (module), 44
quakemigrate.signal.onsets.base (module),

44
quakemigrate.signal.onsets.stalta (mod-

ule), 45
quakemigrate.signal.pickers (module), 48
quakemigrate.signal.pickers.base (mod-

ule), 48
quakemigrate.signal.pickers.gaussian

(module), 49
quakemigrate.signal.scan (module), 59
quakemigrate.signal.trigger (module), 63
quakemigrate.util (module), 65
QuakeScan (class in quakemigrate.signal.scan), 59

R
raw_waveforms (quakemi-

grate.io.data.WaveformData attribute), 30
read_all_stations (quakemigrate.io.data.Archive

attribute), 28
read_all_stations (quakemi-

grate.io.data.WaveformData attribute), 30
read_availability() (in module quakemi-

grate.io.availability), 24
read_lut() (in module quakemigrate.io.core), 26
read_nlloc() (in module quakemi-

grate.lut.create_lut), 35
read_quakemigrate() (in module quakemi-

grate.export.to_obspy), 22
read_response_inv() (in module quakemi-

grate.io.core), 26
read_scanmseed() (in module quakemi-

grate.io.scanmseed), 33
read_stations() (in module quakemigrate.io.core),

26
read_triggered_events() (in module quakemi-

grate.io.triggered_events), 34
read_vmodel() (in module quakemigrate.io.core), 26

76 Index

QuakeMigrate, Release 1.0.0

read_waveform_data() (quakemi-
grate.io.data.Archive method), 28

remove_full_response (quakemi-
grate.signal.local_mag.amplitude.Amplitude
attribute), 54

resample (quakemigrate.io.data.Archive attribute), 28
response_inv (quakemigrate.io.data.Archive at-

tribute), 28
ResponseNotFoundError, 67
ResponseRemovalError, 67
Run (class in quakemigrate.io.core), 25
run (quakemigrate.signal.scan.QuakeScan attribute), 61
run (quakemigrate.signal.trigger.Trigger attribute), 64
run_path (quakemigrate.io.core.Run attribute), 25

S
s_bp_filter (quakemi-

grate.signal.onsets.stalta.STALTAOnset at-
tribute), 46

s_onset_win (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 46

sac_mfast() (in module quakemi-
grate.export.to_mfast), 22

sample_size (quakemigrate.io.data.WaveformData
attribute), 32

sampling_rate (quakemi-
grate.io.data.WaveformData attribute), 30

sampling_rate (quakemi-
grate.signal.onsets.base.Onset attribute),
45

sampling_rate (quakemi-
grate.signal.onsets.stalta.STALTAOnset at-
tribute), 46

sampling_rate (quakemi-
grate.signal.scan.QuakeScan attribute), 61,
62

save() (quakemigrate.lut.lut.LUT method), 40, 41
ScanmSEED (class in quakemigrate.io.scanmseed), 32
serve_traveltimes() (quakemigrate.lut.lut.LUT

method), 40, 41
signal (quakemigrate.io.data.WaveformData at-

tribute), 30
signal_window (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 53

snuffler_markers() (in module quakemi-
grate.export.to_snuffler), 23

snuffler_stations() (in module quakemi-
grate.export.to_snuffler), 23

sta_lta_centred() (in module quakemi-
grate.signal.onsets.stalta), 47

sta_lta_onset() (in module quakemi-
grate.signal.onsets.stalta), 47

stage (quakemigrate.io.core.Run attribute), 25
STALTAOnset (class in quakemi-

grate.signal.onsets.stalta), 46
starttime (quakemigrate.io.data.WaveformData at-

tribute), 30
static_threshold (quakemi-

grate.signal.trigger.Trigger attribute), 64
station_corrections (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

station_extent (quakemigrate.lut.lut.LUT at-
tribute), 41

station_filter (quakemi-
grate.signal.local_mag.magnitude.Magnitude
attribute), 56

StationFileHeaderException, 67
stations (quakemigrate.io.data.Archive attribute), 28
stations (quakemigrate.io.data.WaveformData

attribute), 30
stations() (in module quakemigrate.io.core), 27
stations_xyz (quakemigrate.lut.lut.LUT attribute),

40, 41
stream (quakemigrate.io.scanmseed.ScanmSEED at-

tribute), 32
subname (quakemigrate.io.core.Run attribute), 25

T
threads (quakemigrate.signal.scan.QuakeScan at-

tribute), 61
threshold_method (quakemi-

grate.signal.trigger.Trigger attribute), 64
time2sample() (in module quakemigrate.util), 69
time_step (quakemigrate.signal.scan.QuakeScan at-

tribute), 63
timeit() (in module quakemigrate.util), 69
times() (quakemigrate.io.data.WaveformData

method), 31, 32
TimeSpanException, 67
timestep (quakemigrate.signal.scan.QuakeScan at-

tribute), 61
trace_filter (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

traveltime_to() (quakemigrate.lut.lut.LUT
method), 40, 41

traveltimes (quakemigrate.lut.lut.LUT attribute), 40
Trigger (class in quakemigrate.signal.trigger), 63
trigger() (quakemigrate.signal.trigger.Trigger

method), 64, 65
trigger_summary() (in module quakemi-

grate.plot.trigger), 43
trim2sample() (in module quakemigrate.util), 69

Index 77

QuakeMigrate, Release 1.0.0

U
unit_conversion_factor (quakemi-

grate.lut.lut.Grid3D attribute), 37, 39
unit_name (quakemigrate.lut.lut.Grid3D attribute),

37, 39
update_lut() (in module quakemigrate.lut), 35
upfactor (quakemigrate.io.data.Archive attribute), 28
upsample() (in module quakemigrate.util), 69
ur_corner (quakemigrate.lut.lut.Grid3D attribute), 37
use_hyp_dist (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

V
velocity_model (quakemigrate.lut.lut.LUT at-

tribute), 40

W
wa_response() (in module quakemigrate.util), 69
water_level (quakemi-

grate.signal.local_mag.amplitude.Amplitude
attribute), 53

WaveformData (class in quakemigrate.io.data), 29
weighted_mean (quakemi-

grate.signal.local_mag.magnitude.Magnitude
attribute), 56

write() (quakemigrate.io.scanmseed.ScanmSEED
method), 32, 33

write() (quakemigrate.signal.pickers.base.PhasePicker
method), 48, 49

write_amplitudes() (in module quakemi-
grate.io.amplitudes), 24

write_availability() (in module quakemi-
grate.io.availability), 24

write_cut_waveforms (quakemi-
grate.signal.scan.QuakeScan attribute),
61

write_cut_waveforms() (in module quakemi-
grate.io.cut_waveforms), 27

write_triggered_events() (in module quakemi-
grate.io.triggered_events), 34

written (quakemigrate.io.scanmseed.ScanmSEED at-
tribute), 32

X
xy_files (quakemigrate.signal.scan.QuakeScan at-

tribute), 61
xy_files (quakemigrate.signal.trigger.Trigger at-

tribute), 64

78 Index

	Supported operating systems
	Citation
	Contact
	License
	Contents:
	Python Module Index
	Index

