

[image: QuakeMigrate: a Python package for earthquake detection and location using waveform migration and stacking.]

QuakeMigrate

QuakeMigrate is a Python package for the detection and location of earthquakes using waveform migration and stacking.

QuakeMigrate uses a waveform stacking algorithm to search for coherent seismic phase arrivals across a network of instruments. It produces, from raw data, a catalogue of earthquakes with locations, origin times and phase arrival picks, as well as estimates of the uncertainties associated with these measurements.

The source code for the project is hosted on github.

This package is written by the QuakeMigrate developers, and is distributed under
the GPLv3 License, Copyright QuakeMigrate developers 2020.

Supported operating systems

QuakeMigrate was developed and tested on Ubuntu 16.04/18.04, with the intention of being “platform agnostic”. As of July 2020, the package has been successfully built and run on:

	Ubuntu 16.04/18.04/20.04

	Red Hat Enterprise Linux

	Windows 10

	macOSX High Sierra 10.13.6

Citation

If you use this package in your work, please cite the following paper:

Bacon, C.A., Smith, J.D., Winder, T., Hudson, T., Greenfield, T. and White, R.S. QuakeMigrate: a Modular, Open-Source Python Package for Earthquake Detection and Location. In AGU Fall Meeting 2019. AGU.

or, if this is not possible, please cite the following journal article:

Smith, J.D., White, R.S., Avouac, JP, and S. Bourne (2020), Probabilistic earthquake locations of induced seismicity in the Groningen region, Netherlands, Geophysical Journal International.

We hope to have a publication coming out soon:

Winder, T., Smith, J.D., Bacon, C.A., Hudson, T.S., Drew, J., Greenfield, T. and White, R.S. QuakeMigrate: a Python Package for Automatic Earthquake Detection and Location Using Waveform Migration and Stacking. Seismological Research Letters.

Contact

You can contact us directly at - quakemigrate.developers@gmail.com

Any additional comments/questions can be directed to:
* Tom Winder - tom.winder@esc.cam.ac.uk
* Conor Bacon - conor.bacon@esc.cam.ac.uk

License

This package is written and maintained by the QuakeMigrate developers, Copyright QuakeMigrate developers 2020. It is distributed under the GPLv3 License. Please see the [here](https://www.gnu.org/licenses/gpl-3.0.html) for a complete description of the rights and freedoms that this provides the user.

Contents:

	1. Installation

	2. Tutorials

	3. Source code

1. Installation

QuakeMigrate is a predominantly Python package with some routines written and optimised in C. These are built and linked to QuakeMigrate at installation, which means you will need to ensure that there is a suitable compiler available (more details below).

1.1. Supported operating systems

QuakeMigrate was developed and tested on Ubuntu 16.04/18.04, with the intention of being “platform agnostic”. As of July 2020, the package has been successfully built and run on:

	Ubuntu 16.04/18.04/20.04

	Red Hat Enterprise Linux

	Debian

	Windows 10

	macOSX High Sierra 10.13.6

1.2. Prerequisites

QuakeMigrate supports Python 3.6 or newer (3.7/3.8). We recommend using Anaconda as a package manager and environment management system to isolate and install the specific dependencies of QuakeMigrate. Instructions for downloading and installing Anaconda can be found here [https://docs.anaconda.com/anaconda/install/]. If drive space is limited, consider using Miniconda instead, which ships with a minimal collection of useful packages.

1.2.1. Setting up an environment

Using conda, you can use our quakemigrate.yml file to create and activate a minimally complete environment:

conda env create -f quakemigrate.yml
conda activate quakemigrate

This will install the explicit dependencies of QuakeMigrate (as well as some additional sub-dependencies/useful packages). The full list of dependencies (and versions, where relevant) is:

	matplotlib < 3.3

	numpy

	obspy >= 1.2

	pandas >= 1 and < 1.1

	pyproj >= 2.6

	scipy

Note

These version pins are subject to change. We defer to ObsPy to select suitable versions for NumPy/SciPy.

Warning

Some changes to datetime handling were introduced in matplotlib 3.3, which caused some conflicts with pandas versions <= 1.0.5. A patch was applied, but for the time being we have pinned these two packages until we find time to fully resolve the issues arising from these changes.

In addition, we use NonLinLoc [http://alomax.free.fr/nlloc/] and scikit fmm [https://pythonhosted.org/scikit-fmm/] as backends for producing 1-D traveltime lookup tables.

1.2.1.1. NonLinLoc

To download, unpack, and compile NonLinLoc, you can use:

curl http://alomax.free.fr/nlloc/soft7.00/tar/NLL7.00_src.tgz -o NLL7.00_src.tgz
tar -xzvf NLL7.00_src.tgz
cd src
mkdir bin; export MYBIN=./bin
make -R all

Once the source code has been compiled, we recommend you add the bin to your system path. For Unix systems, this can be done by adding the following to your .bashrc file (typically found in your home directory, ~/):

export PATH=/path/to/nonlinloc/bin:$PATH

replacing the /path/to/nonlinloc with the path to where you downloaded/installed NonLinLoc. Save your .bashrc and open a new terminal window to activate the change. This will allow your shell to access the Vel2Grid and Grid2Time programs anywhere.

1.2.1.2. scikit-fmm

scikit-fmm is a 3rd-party package which implements the fast-marching method. We specify the version 2019.1.30 as previous versions did not catch a potential numerical instability which may lead to unphysical traveltimes. It can be installed using:

pip install scikit-fmm==2019.1.30

It can also be installed along with the rest of package (detailed below).

Note

In order to install scikit-fmm, you will need an accessible C++ compiler, such as gxx (see below for details).

1.2.2. C compilers

In order to install and use QuakeMigrate, you will need a C compiler that will build the migration extension library.

If you already have a suitable compiler (e.g. gcc, MSVC) at the OS level, then you can proceed to the Installing section.

If you do not, or to be sure, we recommend installing a compiler using conda. Instructions for doing this on Linux and macOSX operating systems are given below.

Note

In order to build the (optional) dependency scikit-fmm you will need a C++ compiler (e.g. gxx, MSVC). This can also be done either at the OS level, or using conda (see guidance on the conda compiler tools page, linked below).

1.2.2.1. Linux

We recommend installing the GNU compiler collection (GCC, which previously stood for the GNU C Compiler) through conda [https://docs.conda.io/projects/conda-build/en/latest/resources/compiler-tools.html].

conda install gcc_linux-64

It is generally useful to install compilers at the OS level, including a C++ compiler (e.g. gxx), which is required to build the scikit-fmm package.

Once installed, you can proceed with the QuakeMigrate installation.

1.2.2.2. macOS

As with Linux, we recommend installing GCC through conda.

conda install gcc

Note

We have not yet tested compiling and/or running QuakeMigrate against the Clang compiler.

Installation of compilers at an OS level can be done using Homebrew, a package manager for macOS [https://brew.sh/]. It is then as simple as:

brew install gcc

Once installed, you can proceed with the QuakeMigrate installation.

1.2.2.3. Windows

Compilation and linking of the C extensions has been successful using the Microsoft Visual C++ (MSVC) build tools. We strongly recommend that you download and install these tools in order to use QuakeMigrate. You can either install Visual Studio in its entirety, or just the Build Tools - available here [https://visualstudio.microsoft.com/downloads/]. You will need to restart your computer once the installation process has completed. We recommend using the anaconda command line interface (unix shell-like) to install QuakeMigrate over command prompt.

Warning

QuakeMigrate has been tested and validated on Windows, but there may yet remain some unknown issues. If you encounter an issue (and/or resolve it), please let us know!

Once installed, you can proceed with the QuakeMigrate installation.

1.3. Installing

There are a few ways to get a copy of QuakeMigrate:

1.3.1. From source

Clone the repository [https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository] from our GitHub [https://github.com/QuakeMigrate/quakemigrate] (note: you will need git installed on your system), or alternatively download the source code directly through the GitHub web interface. Once you have a local copy, navigate to the new QuakeMigrate directory and run (ensuring your environment is activated):

pip install .

You can optionally pass a -e argument to install the package in ‘editable’ mode.

If you wish to use scikit-fmm, you can install it here as an optional package using:

pip install .[fmm]

You should now be able to import quakemigrate within a Python session:

python
>>> import quakemigrate

1.3.2. pip install

We will be linking the package to PyPI (the Python Package Index) soon, after which you will be able to use the following command to install the package:

pip install quakemigrate

1.3.3. conda install

We hope to link the package with the conda forge soon, after which you will be able to use the following command to install the package:

conda install -c conda-forge quakemigrate

1.4. Testing your installation

In order to test your installation, you will need to have cloned the GitHub repository. This will ensure you have all of the required benchmarked data (which is not included in pip/conda installs). Then, navigate to QuakeMigrate/examples/Icequake_Iceland and run the example scripts in the following order:

python iceland_lut.py
python iceland_detect.py
python iceland_trigger.py
python iceland_locate.py

Once these have all run successfully, navigate to QuakeMigrate/tests and run:

python test_benchmarks.py

This should execute with no failed tests.

Note

We hope to work this into a more complete suite of tests that can be run in a more automated sense.

1.5. Notes

There is a known issue with PROJ version 6.2.0 which causes vertical coordinates to be incorrectly transformed when using units other than metres (the PROJ default). If you encounter this issue (you will get an ImportError when trying to use the lut subpackage), you should update pyproj. Using conda will install an up-to-date PROJ backend, but you may need to clear your cache of downloaded packages. This can be done using:

conda clean --all

Then reinstall pyproj:

conda uninstall pyproj
conda install pyproj

2. Tutorials

Here we provide a few tutorials that explore each element of the package in more detail and provide code snippets the user can use in their own research.

	2.1. The traveltime lookup table

2.1. The traveltime lookup table

This tutorial will cover the basic ideas and definitions underpinning the traveltime lookup table, as well as showing how they can be created.

In order to reduce computational costs during runtime, we pre-compute traveltime
lookup tables (LUTs) for each seismic phase and each station in the network to every node in a regularised 3-D grid. This grid spans the volume of interest, herein termed the coalescence volume, within which QuakeMigrate will search for events.

2.1.1. Defining the underlying 3-D grid

Before we can create our traveltime lookup table, we have to define the underlying 3-D grid which spans the volume of interest.

2.1.1.1. Coordinate projections

First, we choose a pair of coordinate reference systems to represent the input coordinate space (cproj) and the Cartesian grid space (gproj). We do this using pyproj, which provides the Python bindings for the PROJ library. It is important to think about which projection is best suited to your particular study region. More information can be found [in their documentation](https://pyproj4.github.io/pyproj/stable/).

Warning

The default units of Proj are metres! It is strongly advised that you explicitly state which units you wish to use.

We use here the WGS84 reference ellipsoid (used as standard by the Global Positioning System) as our input space and the Lambert Conformal Conic projection to form our Cartesian space. The units of the Cartesian space are specified as kilometres. The values used in the LCC projection are for a study region in Sabah, Borneo.

from pyproj import Proj

cproj = Proj(proj="longlat", ellps="WGS84", datum"=WGS84", no_defs=True)
gproj = Proj(proj="lcc", lon_0=116.75, lat_0=6.25, lat_1=4.0, lat_2=7.5,
 datum="WGS84", ellps="WGS84", units="km", no_defs=True)

2.1.1.2. Geographical location and spatial extent

In order to geographically situate our lookup table, we choose two reference points in the input coordinate space, herein called the lower-left and upper-right corners (ll_corner and ur_corner, respectively). By default, we work in a depth-positive frame (i.e. positive-down or left-handed coordinate system) and use units of kilometres. It is possible to run QuakeMigrate with distances measured in metres, as long as the user specifies this requirement when defining the grid projection and all inputs (station elevations, grid specification, velocities, etc) are in metres.

This schematic shows the relative positioning of the two corners:

[image: ../_images/LUT_definition.png]
The final piece of information required to fully define the grid on which we will compute traveltimes is the spacing (in each dimension, x, y, z) between each node in the grid (node_spacing). The LUT class will automatically find the number of nodes required in each dimension to span the specified geographical region. If the node spacing doesn’t fit into the corresponding grid dimension an integer number of times, the location of the upper-right corner is shifted to accommodate an additional node.

Note

The corners (ll_corner and ur_corner) are nodes - hence a grid that is 20 x 20 x 20 km, with 2 km node spacing in each dimension, will have 11 nodes in x, y, and z.

ll_corner = [116.075, 5.573, -1.750]
ur_corner = [117.426, 6.925, 27.750]
node_spacing = [0.5, 0.5, 0.5]

2.1.1.3. Bundling the grid specification

The grid specification needs to be bundled into a dictionary to be used as an input for the compute_traveltimes function. We use here the AttribDict from ObsPy, which extends the standard Python dict data structure to also
have .-style access.

grid_spec = AttribDict()
grid_spec.ll_corner = ll_corner
grid_spec.ur_corner = ur_corner
grid_spec.node_spacing = node_spacing
grid_spec.grid_proj = gproj
grid_spec.coord_proj = cproj

2.1.2. Computing traveltimes

We have bundled a few methods of computing traveltimes into QuakeMigrate.

In addition to the grid specification, we need to provide a list of stations for which to compute traveltime tables.

from quakemigrate.io import read_stations

stations = read_stations("/path/to/station_file")

The read_stations function is a passthrough for pandas.read_csv, so we can handle any delimiting characters (e.g. by specifying read_stations(“station_file”, delimiter=”,”)). There are four required (case-sensitive) column
headers - “Name”, “Longitude”, “Latitude”, “Elevation”.

Note

Station elevations are in the positive-up/right-handed coordinate frame. An elevation of 2 would correspond to 2 (km) above sea level.

The compute_traveltimes function used in the following sections returns a lookup table (a fully-populated instance of the LUT class) which can be used for detect, trigger, and locate.

2.1.2.1. Homogeneous velocity model

Simply calculates the straight line traveltimes between stations and points in the grid. It is possible to use stations that are outside the specified span of the grid if desired. For example, if you have a good prior constraint on the possible location of the seismicity you are hoping to detect; for basal icequakes you may limit the LUT grid to span a small range of depths around the ice-bed interface. Any reduction in grid size can greatly reduce the computational cost of running QuakeMigrate, as runtime scales with the number of nodes - so n^3 for an equidimensional lookup table grid of side-length n.

from quakemigrate.lut import compute_traveltimes

compute_traveltimes(grid_spec, stations, method="homogeneous", vp=5., vs=3.,
 log=True, save_file=/path/to/save_file)

2.1.2.2. 1-D velocity models

1-D velocity models are read in from an (arbitrarily delimited) textfile using quakemigrate.io.read_vmodel. There is only 1 required (case-sensitive) column header - “Depth”, which corresponds to the depths for each block in the velocity model. Each additional column should contain a velocity model that corresponds to a particular seismic phase, with a (case-sensitive) header, e.g. Vp (Note: Uppercase V, lowercase phase code).

Note

The units for velocities should correspond to the units used in specifying the grid projection. km -> km / s; m -> m / s.

Note

Depths are in the positive-down/left-handed coordinate frame. A depth of 5 would correspond to 5 (km) below sea level.

2.1.2.2.1. 1-D fast-marching method

The fast-marching method implicitly tracks the evolution of the wavefront. Our current backend is the scikit-fmm package. It is possible to use this package to compute traveltimes to 1-D, 2-D, or 3-D velocity models. Currently we provide a utility function that computes traveltime tables for 1-D velocity models. The format of this velocity model file is specified below. See the scikit-fmm documentation and Rawlinson & Sambridge (2005) for more details.

Note

Traveltime calculation can only be performed between grid nodes: the station location is therefore taken as the closest grid node. Note that for large node spacings this may cause a modest error in the calculated traveltimes.

Note

All stations must be situated within the grid on which traveltimes are to be computed.

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(grid_spec, stations, method="1dfmm", vmod=vmod,
 log=True, save_file=/path/to/save_file)

2.1.2.2.2. 1-D NonLinLoc-style sweep

Uses the Eikonal solver from NonLinLoc under the hood to generate a traveltime grid for a 2-D slice that passes through the station and the point in the grid furthest away from that station. This slice is then “swept” using a bilinear interpolation scheme to produce a 3-D traveltime grid. The format of the input velocity model file is specified below. This also has the benefit of being able to include stations outside of the volume of interest, without having to increase the size of the grid.

Note

Requires the user to install the NonLinLoc software package (available from http://alomax.free.fr/nlloc/)

from quakemigrate.lut import compute_traveltimes
from quakemigrate.io import read_vmodel

vmod = read_vmodel("/path/to/vmodel_file")
compute_traveltimes(grid_spec, stations, method="1dsweep", vmod=vmod,
 block_model=True, log=True, save_file=/path/to/save_file)

2.1.2.3. Other formats

It is also easy to import traveltime lookup tables generated by other means. We have provided a parser for lookup tables in the NonLinLoc format (read_nlloc()). It is straightforward to adapt this code to read any other traveltime lookup table, so long as it is stored as an array. Create an instance of the LUT class with the correct grid dimensions, then add the (C-ordered) traveltime arrays to the LUT.traveltimes dictionary using:

lut.traveltimes.setdefault(STATION, {}).update(
 {PHASE.upper(): traveltime_table})

where STATION and PHASE are station name and seismic phase strings, respectively.

2.1.3. Saving your LUT

If you provided a save_file argument to the compute_traveltimes function, the LUT will already be saved. In any case, the lookup table object is returned by the compute_traveltimes function if you wish to explore the object further. We use the pickle library (a Python standard library) to serialise the LUT, which essentially freezes the state of the LUT. If you have added 3rd-party traveltime lookup tables to the LUT, you will need to save using:

lut.save("/path/to/output/lut")

2.1.4. Reading in a saved LUT

When running the main stages of QuakeMigrate (detect, trigger, and locate)
it is necessary to read in the saved LUT, which can be done as:

from quakemigrate.io import read_lut
lut = read_lut(lut_file="/path/to/lut_file")

3. Source code

Explore the documentation and source code for the QuakeMigrate package.

	3.1. quakemigrate.core

	3.2. quakemigrate.export

	3.3. quakemigrate.io

	3.4. quakemigrate.lut package

	3.5. quakemigrate.plot

	3.6. quakemigrate.signal

	3.7. quakemigrate.util

3.1. quakemigrate.core

The quakemigrate.core module provides Python bindings for the library of
compiled C routines that form the core of QuakeMigrate:

	Migrate onsets - This routine performs the continuous migration through time and space of the onset functions. It has been parallelised with openMP.

	Find maximum coalescence - This routine finds the continuous maximum coalescence amplitude in the 4-D coalesence volume.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.1.1. Functions

Bindings for the C library functions, migrate and find_max_coa.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.core.lib.find_max_coa(map4d, threads)

	Finds time series of the maximum coalescence/normalised coalescence in the
3-D volume, and the corresponding grid indices.

	Parameters

	
	map4d (numpy.ndarray of numpy.double) – 4-D coalescence map, shape(nx, ny, nz, nsamples).

	threads (int) – Number of threads with which to perform the scan.

	Returns

	
	max_coa (numpy.ndarray of numpy.double) – Time series of the maximum coalescence value in the 3-D volume.

	max_norm_coa (numpy.ndarray of numpy.double) – Times series of the maximum normalised coalescence value in the 3-D
volume.

	max_coa_idx (numpy.ndarray of int) – Time series of the flattened grid indices corresponding to the maximum
coalescence value in the 3-D volume.

	
quakemigrate.core.lib.migrate(onsets, traveltimes, first_idx, last_idx, available, threads)

	Computes 4-D coalescence map by migrating seismic phase onset functions.

	Parameters

	
	onsets (numpy.ndarry of float) – Onset functions for each seismic phase, shape(nstations, nsamples).

	traveltimes (numpy.ndarry of int) – Grids of seismic phase traveltimes converted to an integer multiple of
the sampling rate, shape(nx, ny, nz, nstations).

	first_idx (int) – Index of first sample in array from which to scan.

	last_idx (int) – Index of last sample in array up to which to scan.

	available (int) – Number of available onset functions.

	threads (int) – Number of threads with which to perform the scan.

	Returns

	map4d – 4-D coalescence map, shape(nx, ny, nz, nsamples).

	Return type

	numpy.ndarray of numpy.double

	Raises

	
	ValueError – If mismatch between number of onset functions and traveltime lookup
tables - expect both to be equal to the no. stations * no. phases.

	ValueError – If the number of samples in the onset functions is less than the number
of samples array is smaller than map4d[0, 0, 0, :].

3.2. quakemigrate.export

The quakemigrate.export module provides some utility functions to export
the outputs of QuakeMigrate to other catalogue formats/software inputs:

	Input files for NonLinLoc

	ObsPy Catalog object

	Snuffler pick/event files for manual phase picking

	MFAST for shear-wave splitting analysis

Warning

Export modules are an ongoing work in progress. The functionality

of the core module to_obspy has been validated, but there may still be bugs
elsewhere. If you are interested in using these, or wish to add additional
functionality, please contact the QuakeMigrate developers at
quakemigrate.developers@gmail.com .

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.2.1. quakemigrate.export.to_mfast

This module provides parsers to generate SAC waveform files from an ObsPy
Catalog, with headers correctly populated for MFAST.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.export.to_mfast.sac_mfast(event, stations, output_path, filename=None)

	Function to create the SAC file.

	Parameters

	
	event (ObsPy Event object) – Contains information about the origin time and a list of associated
picks.

	stations (pandas DataFrame) – DataFrame containing station information.

	output_path (str) – Location to save the SAC file.

	filename (str, optional) – Name of SAC file - defaults to “eventid/eventid.station.{comp}”.

3.2.2. quakemigrate.export.to_nlloc

This module provides parsers to export an ObsPy Catalog to the NonLinLoc input
file format. We prefer this to the one offered by ObsPy as it includes the
additional weighting term.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.export.to_nlloc.nlloc_obs(event, filename)

	Write a NonLinLoc Phase file from an obspy Catalog object.

	Parameters

	
	event (obspy Catalog object) – Contains information on a single event.

	filename (str) – Name of NonLinLoc phase file.

3.2.3. quakemigrate.export.to_obspy

This module provides parsers to export the output of a QuakeMigrate run to an
ObsPy Catalog.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.export.to_obspy.read_quakemigrate(run_dir, units, run_subname='', local_mag_ph='S')

	Reads the .event and .picks outputs, and .amps outputs if available, from a
QuakeMigrate run into an obspy Catalog object.

NOTE: if a station_corrections dict was used to calculate the
network-averaged local magnitude, this information will not be included in
the obspy event object. There might therefore be a discrepancy between the
mean of the StationMagnitudes and the event magnitude.

	Parameters

	
	run_dir (str) – Path to QuakeMigrate run directory.

	units ({"km", "m"}) – Grid projection coordinates for QM LUT (determines units of depths and
uncertainties in the .event files).

	run_subname (str, optional) – Run_subname string (if applicable).

	local_mag_ph ({"S", "P"}, optional) – Amplitude measurement used to calculate local magnitudes. (Default “S”)

	Returns

	cat – Catalog containing events in the specified QuakeMigrate run directory.

	Return type

	obspy.Catalog object

3.2.4. quakemigrate.export.to_snuffler

This module provides parsers to generate input files for Snuffler, a manual
phase picking interface from the Pyrocko package.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.export.to_snuffler.snuffler_markers(event, output_path, filename=None)

	Function to create marker files compatible with snuffler

	Parameters

	
	event (ObsPy Event object) – Contains information about the origin time and a list of associated
picks

	output_path (str) – Location to save the marker file

	filename (str, optional) – Name of marker file - defaults to eventid/eventid.markers

	
quakemigrate.export.to_snuffler.snuffler_stations(stations, output_path, filename, network_code=None)

	Function to create station files compatible with snuffler.

	Parameters

	
	stations (pandas DataFrame) – DataFrame containing station information.

	output_path (str) – Location to save snuffler station file.

	filename (str) – Name of output station file.

	network_code (str) – Unique identifier for the seismic network.

3.3. quakemigrate.io

The quakemigrate.io module handles the various input/output operations
performed by QuakeMigrate. This includes:

	Reading waveform data - The submodule data.py can handle any waveform data archives with regular directory structures.

	Writing results - The submodule quakeio.py provides a suite of functions to output QuakeMigrate results in the QuakeMigrate format.

	Parse QuakeMigrate results into the ObsPy Catalog structure.

	Various parsers to input files for different pieces of software. Feel free to contribute more!

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.3.1. quakemigrate.io.amplitudes

Module to handle input/output of .amps files.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.io.amplitudes.write_amplitudes(run, amplitudes, event)

	Write amplitude results to a new .amps file. This includes amplitude
measurements, and the magnitude estimates derived from them (with station
correction terms appied, if provided).

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measurements for each component of each
station in the station file, and individual local magnitude estimates
derived from them.
Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”, “P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”, “ML”,
“ML_Err”]

Index = Trace ID (see obspy.Trace object property ‘id’)

	event (Event object) – Light class encapsulating signal, onset, and location information for a
given event.

3.3.2. quakemigrate.io.availability

Module to handle input/output of StationAvailability.csv files.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.io.availability.read_availability(run, starttime, endtime)

	Read in station availability data to a pandas.DataFrame from csv files
split by Julian day.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	starttime (obspy.UTCDateTime object) – Timestamp from which to read the station availability.

	endtime (obspy.UTCDateTime object) – Timestamp up to which to read the station availability.

	Returns

	availability – Details the availability of each station for each timestep of detect.

	Return type

	pandas.DataFrame object

	
quakemigrate.io.availability.write_availability(run, availability)

	Write out csv files (split by Julian day) containing station availability
data.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	availability (pandas.DataFrame object) – Details the availability of each station for each timestep of detect.

3.3.3. quakemigrate.io.core

Module to handle input/output for QuakeMigrate.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.io.core.Run(path, name, subname='', stage=None, loglevel='info')

	Bases: object

Light class to encapsulate i/o path information for a given run.

	Parameters

	
	stage (str) – Specifies run stage of QuakeMigrate (“detect”, “trigger”, or “locate”).

	path (str) – Points to the top level directory containing all input files, under
which the specific run directory will be created.

	name (str) – Name of the current QuakeMigrate run.

	subname (str, optional) – Optional name of a sub-run - useful when testing different trigger
parameters, for example.

	
path

	Points to the top level directory containing all input files, under
which the specific run directory will be created.

	Type

	pathlib.Path object

	
name

	Name of the current QuakeMigrate run.

	Type

	str

	
run_path

	Points to the run directory into which files will be written.

	Type

	pathlib.Path object

	
subname

	Optional name of a sub-run - useful when testing different trigger
parameters, for example.

	Type

	str

	
stage

	Track which stage of QuakeMigrate is being run.

	Type

	{“detect”, “trigger”, “locate”}, optional

	
loglevel

	Set the logging level. (Default “info”)

	Type

	{“info”, “debug”}, optional

	
logger(log)

	Spins up a logger configured to output to stdout or stdout + log file.

	
logger(log)

	Configures the logging feature.

	Parameters

	log (bool) – Toggle for logging. If True, will output to stdout and generate a
log file.

	
name

	Get the run name as a formatted string.

	
quakemigrate.io.core.read_lut(lut_file)

	Read the contents of a pickle file and restore state of the lookup table
object.

	Parameters

	lut_file (str) – Path to pickle file to load.

	Returns

	lut – Lookup table populated with grid specification and traveltimes.

	Return type

	LUT object

	
quakemigrate.io.core.read_response_inv(response_file, sac_pz_format=False)

	Reads response information from file, returning it as a obspy.Inventory
object.

	Parameters

	
	response_file (str) – Path to response file.
Please see the obspy.read_inventory() documentation for a full list
of supported file formats. This includes a dataless.seed volume, a
concatenated series of RESP files or a stationXML file.

	sac_pz_format (bool, optional) – Toggle to indicate that response information is being provided in SAC
Pole-Zero files. NOTE: not yet supported.

	Returns

	response_inv – ObsPy response inventory.

	Return type

	obspy.Inventory object

	Raises

	
	NotImplementedError – If the user selects sac_pz_format.

	TypeError – If the user provides a response file that is not readable by ObsPy.

	
quakemigrate.io.core.read_stations(station_file, **kwargs)

	Reads station information from file.

	Parameters

	
	station_file (str) – Path to station file.
File format (header line is REQUIRED, case sensitive, any order):

Latitude, Longitude, Elevation (units of metres), Name

	kwargs (dict) – Passthrough for pandas.read_csv kwargs.

	Returns

	stn_data – Columns: “Latitude”, “Longitude”, “Elevation”, “Name”

	Return type

	pandas.DataFrame object

	Raises

	StationFileHeaderException – Raised if the input file is missing required entries in the header.

	
quakemigrate.io.core.read_vmodel(vmodel_file, **kwargs)

	Reads velocity model information from file.

	Parameters

	
	vmodel_file (str) – Path to velocity model file.
File format: (header line is REQUIRED, case sensitive, any order):
Depth (units of metres), Vp, Vs (units of metres per second)

	kwargs (dict) – Passthrough for pandas.read_csv kwargs.

	Returns

	vmodel_data – Columns: “Depth”, “Vp”, “Vs”

	Return type

	pandas.DataFrame object

	Raises

	VelocityModelFileHeaderException – Raised if the input file is missing required entries in the header.

	
quakemigrate.io.core.stations(station_file, **kwargs)

	Alias for read_stations.

3.3.4. quakemigrate.io.cut_waveforms

Module to handle input/output of cut waveforms.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.io.cut_waveforms.write_cut_waveforms(run, event, file_format, pre_cut=0.0, post_cut=0.0)

	Output raw cut waveform data as a waveform file – defaults to mSEED.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	event (Event object) – Light class encapsulating signal, onset, and location information for a
given event.

	file_format (str, optional) – File format to write waveform data to. Options are all file formats
supported by obspy, including: “MSEED” (default), “SAC”, “SEGY”,
“GSE2”

	pre_cut (float, optional) – Specify how long before the event origin time to cut the waveform
data from

	post_cut (float, optional) – Specify how long after the event origin time to cut the waveform
data to

3.3.5. quakemigrate.io.data

Module for processing waveform files stored in a data archive.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.io.data.Archive(archive_path, stations, archive_format=None, **kwargs)

	Bases: object

The Archive class handles the reading of archived waveform data.

It is capable of handling any regular archive structure. Requests to read
waveform data are served up as a quakemigrate.data.WaveformData object.
Data will be checked for availability within the requested time period, and
optionally resampled to meet a unified sampling rate. The raw data read
from the archive will also be retained.

If provided, a response inventory provided for the archive will be stored
with the waveform data for response removal, if needed.

	Parameters

	
	archive_path (str) – Location of seismic data archive: e.g.: ./DATA_ARCHIVE.

	stations (pandas.DataFrame object) – Station information.
Columns [“Latitude”, “Longitude”, “Elevation”, “Name”]

	archive_format (str, optional) – Sets path type for different archive formats.

	kwargs (**dict) – See Archive Attributes for details.

	
archive_path

	Location of seismic data archive: e.g.: ./DATA_ARCHIVE.

	Type

	pathlib.Path object

	
stations

	Series object containing station names.

	Type

	pandas.Series object

	
format

	File naming format of data archive.

	Type

	str

	
read_all_stations

	If True, read all stations in archive for that time period. Else, only
read specified stations.

	Type

	bool, optional

	
resample

	If true, perform resampling of data which cannot be decimated directly
to the desired sampling rate.

	Type

	bool, optional

	
response_inv

	ObsPy response inventory for this waveform archive, containing
response information for each channel of each station of each network.

	Type

	obspy.Inventory object, optional

	
upfactor

	Factor by which to upsample the data to enable it to be decimated to
the desired sampling rate, e.g. 40Hz -> 50Hz requires upfactor = 5.

	Type

	int, optional

	
path_structure(path_type="YEAR/JD/STATION")

	Set the file naming format of the data archive.

	
read_waveform_data(starttime, endtime, sampling_rate)

	Read in all waveform data between two times, decimate / resample if
required to reach desired sampling rate. Return all raw data as an
obspy Stream object and processed data for specified stations as an
array for use by QuakeScan to calculate onset functions for migration.

	
path_structure(archive_format='YEAR/JD/STATION', channels='*')

	Define the path structure of the data archive.

	Parameters

	
	archive_format (str, optional) – Sets path type for different archive formats.

	channels (str, optional) – Channel codes to include. E.g. channels=”[B,H]H*”. (Default “*”)

	Raises

	ArchivePathStructureError – If the archive_format specified by the user is not a valid option.

	
read_waveform_data(starttime, endtime, sampling_rate, pre_pad=0.0, post_pad=0.0)

	Read in the waveform data for all stations in the archive between two
times and return station availability of the stations specified in the
station file during this period. Decimate / resample (optional) this
data if required to reach desired sampling rate.

Output both processed data for stations in station file and all raw
data in an obspy Stream object.

By default, data with mismatched sampling rates will only be decimated.
If necessary, and if the user specifies resample = True and an
upfactor to upsample by upfactor = int, data can also be upsampled
and then, if necessary, subsequently decimated to achieve the desired
sampling rate.

For example, for raw input data sampled at a mix of 40, 50 and 100 Hz,
to achieve a unified sampling rate of 50 Hz, the user would have to
specify an upfactor of 5; 40 Hz x 5 = 200 Hz, which can then be
decimated to 50 Hz.

NOTE: data will be detrended and a cosine taper applied before
decimation, in order to avoid edge effects when applying the lowpass
filter. Otherwise, data for migration will be added tp data.signal with
no processing applied.

Supports all formats currently supported by ObsPy, including: “MSEED”
(default), “SAC”, “SEGY”, “GSE2” .

	Parameters

	
	starttime (obspy.UTCDateTime object, optional) – Timestamp from which to read waveform data.

	endtime (obspy.UTCDateTime object, optional) – Timestamp up to which to read waveform data.

	sampling_rate (int) – Desired sampling rate for data to be added to signal. This will
be achieved by resampling the raw waveform data. By default, only
decimation will be applied, but data can also be upsampled if
specified by the user when creating the Archive object.

	pre_pad (float, optional) – Additional pre pad of data to cut based on user-defined pre_cut
parameter. Defaults to none: pre_pad calculated in QuakeScan will
be used (included in starttime).

	post_pad (float, optional) – Additional post pad of data to cut based on user-defined post_cut
parameter. Defaults to none: post_pad calculated in QuakeScan will
be used (included in endtime).

	Returns

	data – Object containing the archived data that satisfies the query.

	Return type

	WaveformData object

	
class quakemigrate.io.data.WaveformData(starttime, endtime, sampling_rate, stations=None, response_inv=None, read_all_stations=False, pre_pad=0.0, post_pad=0.0)

	Bases: object

The WaveformData class encapsulates the waveform data returned by an`
Archive query.

This includes the waveform data which has been pre-processed to a unified
sampling rate, and checked for gaps, ready for use to calculate onset
functions.

	Parameters

	
	starttime (obspy.UTCDateTime object) – Timestamp of first sample of waveform data.

	endtime (obspy.UTCDateTime object) – Timestamp of last sample of waveform data.

	sampling_rate (int) – Desired sampling rate of signal data.

	stations (pandas.Series object, optional) – Series object containing station names.

	read_all_stations (bool, optional) – If True, raw_waveforms contain all stations in archive for that time
period. Else, only selected stations will be included.

	response_inv (obspy.Inventory object, optional) – ObsPy response inventory for this waveform archive, containing
response information for each channel of each station of each network.

	pre_pad (float, optional) – Additional pre pad of data cut based on user-defined pre_cut
parameter.

	post_pad (float, optional) – Additional post pad of data cut based on user-defined post_cut
parameter.

	
starttime

	Timestamp of first sample of waveform data.

	Type

	obspy.UTCDateTime object

	
endtime

	Timestamp of last sample of waveform data.

	Type

	obspy.UTCDateTime object

	
sampling_rate

	Sampling rate of signal data.

	Type

	int

	
stations

	Series object containing station names.

	Type

	pandas.Series object

	
read_all_stations

	If True, raw_waveforms contain all stations in archive for that time
period. Else, only selected stations will be included.

	Type

	bool

	
raw_waveforms

	Raw seismic data found and read in from the archive within the
specified time period. This may be for all stations in the archive,
or only those specified by the user. See read_all_stations.

	Type

	obspy.Stream object

	
pre_pad

	Additional pre pad of data cut based on user-defined pre_cut
parameter.

	Type

	float

	
post_pad

	Additional post pad of data cut based on user-defined post_cut
parameter.

	Type

	float

	
signal

	3-component seismic data at the desired sampling rate; only for
desired stations, which have continuous data on all 3 components
throughout the desired time period and where (if necessary) the data
could be successfully resampled to the desired sampling rate.

	Type

	numpy.ndarray, shape(3, nstations, nsamples)

	
availability

	Array containing 0s (no data) or 1s (data), corresponding to whether
data for each station met the requirements outlined in signal

	Type

	np.ndarray of ints, shape(nstations)

	
filtered_signal

	Filtered data originally from signal.

	Type

	numpy.ndarray, shape(3, nstations, nsamples)

	
add_stream(stream, resample, upfactor)

	Function to add data supplied in the form of an obspy.Stream object.

	
get_wa_waveform(trace, **response_removal_params)

	Calculate the Wood-Anderson corrected waveform for a obspy.Trace
object.

	
times()

	Utility function to generate the corresponding timestamps for the
waveform and coalescence data.

	Raises

	NotImplementedError – If the user attempts to use the get_real_waveform() method.

	
add_stream(stream, resample, upfactor)

	Add signal data supplied in an obspy.Stream object. Perform
resampling if necessary (decimation and/or upsampling), and determine
availability of selected stations.

	streamobspy.Stream object

	Contains list of obspy.Trace objects containing the waveform
data to add.

	resamplebool, optional

	If true, perform resampling of data which cannot be decimated
directly to the desired sampling rate.

	upfactorint, optional

	Factor by which to upsample the data to enable it to be decimated
to the desired sampling rate, e.g. 40Hz -> 50Hz requires
upfactor = 5.

	
get_real_waveforms(tr, remove_full_response=False, velocity=True)

	Coming soon.

	
get_wa_waveform(tr, water_level, pre_filt, remove_full_response=False, velocity=False)

	Calculate simulated Wood Anderson displacement waveform for a Trace.

	Parameters

	
	tr (obspy.Trace object) – Trace containing the waveform to be corrected to a Wood-Anderson
response

	water_level (float) – Water-level to be used in the instrument correction.

	pre_filt (tuple of floats, or None) – Filter corners describing filter to be applied to the trace before
deconvolution. E.g. (0.05, 0.06, 30, 35) (in Hz)

	remove_full_response (bool, optional) – Remove all response stages, inc. FIR (st.remove_response()), not
just poles-and-zero response stage. Default: False.

	velocity (bool, optional) – Output velocity waveform, instead of displacement. Default: False.

	Returns

	tr – Trace corrected to Wood-Anderson response.

	Return type

	obspy.Trace object

	Raises

	
	AttributeError – If no response inventory has been supplied.

	ResponseNotFoundError – If the response information for a trace can’t be found in the
supplied response inventory.

	ResponseRemovalError – If the deconvolution of the instrument response and simulation of
the Wood-Anderson response is unsuccessful.

	NotImplementedError – If the user selects velocity=True.

	
sample_size

	s).

	Type

	Get the size of a sample (units

	
times(**kwargs)

	Utility function to generate timestamps between data.starttime and
data.endtime, with a sample size of data.sample_size

	Returns

	times – Timestamps for the timeseries data.

	Return type

	numpy.ndarray, shape(nsamples)

3.3.6. quakemigrate.io.scanmseed

Module to handle input/output of .scanmseed files.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.io.scanmseed.ScanmSEED(run, continuous_write, sampling_rate)

	Bases: object

Light class to encapsulate the data output by the detect stage of
QuakeMigrate. This data is stored in an obspy.Stream object with the
channels: [“COA”, “COA_N”, “X”, “Y”, “Z”].

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	continuous_write (bool) – Option to continuously write the .scanmseed file output by detect() at
the end of every time step. Default behaviour is to write in day chunks
where possible.

	sampling_rate (int) – Desired sampling rate of input data; sampling rate at which to compute
the coalescence function. Default: 50 Hz.

	
stream

	Output of detect() stored in obspy.Stream object. The values have
been multiplied by a factor to make use of more efficient compression.
Channels: [“COA”, “COA_N”, “X”, “Y”, “Z”]

	Type

	obspy.Stream object

	
written

	Tracker for whether the data appended has been written recently.

	Type

	bool

	
append(times, max_coa, max_coa_n, coord, map4d=None)

	Append the output of QuakeScan._compute() to the coalescence stream.

	
empty(starttime, timestep, i, msg)

	Create an set of empty arrays for a given timestep and append to the
coalescence stream.

	
write(write_start=None, write_end=None)

	Write the coalescence stream to a .scanmseed file.

	
append(starttime, max_coa, max_coa_n, coord, ucf)

	Append latest timestep of detect() output to obspy.Stream object.
Multiply channels [“COA”, “COA_N”, “X”, “Y”, “Z”] by factors of
[“1e5”, “1e5”, “1e6”, “1e6”, “1e3”] respectively, round and convert to
int32 as this dramatically reduces memory usage, and allows the
coastream data to be saved in mSEED format with STEIM2 compression.
The multiplication factor is removed when the data is read back in.

	Parameters

	
	starttime (obspy.UTCDateTime object) – Timestamp of first sample of coalescence data.

	max_coa (numpy.ndarray of floats, shape(nsamples)) – Coalescence value through time.

	max_coa_n (numpy.ndarray of floats, shape(nsamples)) – Normalised coalescence value through time.

	coord (numpy.ndarray of floats, shape(nsamples)) – Location of maximum coalescence through time in input projection
space.

	ucf (float) – A conversion factor based on the lookup table grid projection. Used
to ensure the same level of precision (millimetre) is retained
during compression, irrespective of the units of the grid
projection.

	
empty(starttime, timestep, i, msg, ucf)

	Create an empty set of arrays to write to .scanmseed; used where there
is no data available to run _compute().

	Parameters

	
	starttime (obspy.UTCDateTime object) – Timestamp of first sample in the given timestep.

	timestep (float) – Length (in seconds) of timestep used in detect().

	i (int) – The ith timestep of the continuous compute.

	msg (str) – Message to output to log giving details as to why this timestep is
empty.

	ucf (float) – A conversion factor based on the lookup table grid projection. Used
to ensure the same level of precision (millimetre) is retained
during compression, irrespective of the units of the grid
projection.

	
write(write_start=None, write_end=None)

	Write a new .scanmseed file from an obspy.Stream object containing
the data output from detect(). Note: values have been multiplied by a
power of ten, rounded and converted to an int32 array so the data can
be saved as mSEED with STEIM2 compression. This multiplication factor
is removed when the data is read back in with read_scanmseed().

	Parameters

	
	write_start (obspy.UTCDateTime object, optional) – Timestamp from which to write the coalescence stream to file.

	write_end (obspy.UTCDateTime object, optional) – Timestamp up to which to write the coalescence stream to file.

	
quakemigrate.io.scanmseed.read_scanmseed(run, starttime, endtime, pad, ucf)

	Read .scanmseed files between two time stamps. Files are labelled by year
and Julian day.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	starttime (obspy.UTCDateTime object) – Timestamp from which to read the coalescence stream.

	endtime (obspy.UTCDateTime object) – Timestamp up to which to read the coalescence stream.

	pad (float) – Read in “pad” seconds of additional data on either end.

	ucf (float) – A conversion factor based on the lookup table grid projection. Used to
ensure the same level of precision (millimetre) is retained during
compression, irrespective of the units of the grid projection.

	Returns

	
	data (pandas.DataFrame object) – Data output by detect() – decimated scan.
Columns: [“DT”, “COA”, “COA_N”, “X”, “Y”, “Z”] - X/Y/Z as lon/lat/m

	stats (obspy.trace.Stats object) – Container for additional header information for coalescence trace.
Contains keys: network, station, channel, starttime, endtime,

sampling_rate, delta, npts, calib, _format, mseed

3.3.7. quakemigrate.io.triggered_events

Module to handle input/output of TriggeredEvents.csv files.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.io.triggered_events.read_triggered_events(run, **kwargs)

	Read triggered events from .csv file.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	starttime (obspy.UTCDateTime object, optional) – Timestamp from which to include events in the locate scan.

	endtime (obspy.UTCDateTime object, optional) – Timestamp up to which to include events in the locate scan.

	trigger_file (str, optional) – File containing triggered events to be located.

	Returns

	events – Triggered events information. Columns: [“EventID”, “CoaTime”,
“TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “COA”, “COA_NORM”].

	Return type

	pandas.DataFrame object

	
quakemigrate.io.triggered_events.write_triggered_events(run, events, starttime)

	Write triggered events to a .csv file.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	events (pandas.DataFrame object) – Triggered events information. Columns: [“EventID”, “CoaTime”,
“TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “COA”, “COA_NORM”].

	starttime (obspy.UTCDateTime object) – Timestamp from which events have been triggered.

3.4. quakemigrate.lut package

The quakemigrate.lut module handles the definition and generation of the
traveltime lookup tables used in QuakeMigrate.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.lut.update_lut(old_lut_file, save_file)

	Utility function to convert old-style LUTs to new-style LUTs.

	Parameters

	
	old_lut_file (str) – Path to lookup table file to update.

	save_file (str, optional) – Output path for updated lookup table.

3.4.1. quakemigrate.lut.create_lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.lut.create_lut.compute_traveltimes(grid_spec, stations, method, phases=['P', 'S'], fraction_tt=0.1, save_file=None, log=False, **kwargs)

	Top-level method for computing traveltime lookup tables.

This function takes a grid specification and is capable of computing
traveltimes for an arbitrary number of phases using a variety of
techniques.

	Parameters

	
	grid_spec (dict) – Dictionary containing all of the defining parameters for the underlying
3-D grid on which the traveltimes are to be calculated. For expected
keys, see Grid3D.

	stations (pandas.DataFrame) – DataFrame containing station information (lat/lon/elev).

	method (str) –
	Method to be used when computing the traveltime lookup tables.

	”homogeneous” - straight line velocities
“1dfmm” - 1-D fast-marching method using scikit-fmm
“1dsweep” - a 2-D traveltime grid for a 1-D velocity model is swept

over the 3-D grid using a bilinear interpolation scheme

	phases (list of str, optional) – List of seismic phases for which to calculate traveltimes.

	fraction_tt (float, optional) – An estimate of the uncertainty in the velocity model as a function of
a fraction of the traveltime. (Default 0.1 == 10%)

	filename (str, optional) – Path to location to save pickled lookup table.

	log (bool, optional) – Toggle for logging - default is to only print information to stdout.
If True, will also create a log file.

	kwargs (dict) – Dictionary of all keyword arguments passed to compute when called.
For lists of valid arguments, please refer to the relevant method.

	Returns

	lut – Lookup table populated with traveltimes from the NonLinLoc files.

	Return type

	LUT object

	
quakemigrate.lut.create_lut.read_nlloc(path, stations, phases=['P', 'S'], fraction_tt=0.1, log=False)

	Read in a traveltime lookup table that is saved in the NonLinLoc format.

	Parameters

	
	path (str) – Path to directory containing .buf and .hdr files.

	stations (pandas.DataFrame) – DataFrame containing station information (lat/lon/elev).

	phases (list of str, optional) – List of seismic phases for which to calculate traveltimes.

	fraction_tt (float, optional) – An estimate of the uncertainty in the velocity model as a function of
a fraction of the traveltime. (Default 0.1 == 10%)

	log (bool, optional) – Toggle for logging - default is to only print information to stdout.
If True, will also create a log file.

	Returns

	lut – Lookup table populated with traveltimes from the NonLinLoc files.

	Return type

	LUT object

3.4.2. quakemigrate.lut.lut

Module to produce traveltime lookup tables defined on a Cartesian grid.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.lut.lut.Grid3D(ll_corner, ur_corner, node_spacing, grid_proj, coord_proj)

	Bases: object

A grid object represents a collection of points in a 3-D Cartesian space
that can be used to produce regularised traveltime lookup tables that
sample the continuous traveltime space for each station in a seismic
network.

This class also provides the series of transformations required to move
between the input projection, the grid projection and the grid index
coordinate spaces.

The size and shape specifications of the grid are defined by providing the
(input projection) coordinates for the lower-left and upper-right corners,
a node spacing and the projections (defined using pyproj) of the input and
grid spaces.

	
coord_proj

	Input coordinate space projection.

	Type

	pyproj.Proj object

	
grid_corners

	Positions of the corners of the grid in the grid coordinate space.

	Type

	array-like, shape (8, 3)

	
grid_proj

	Grid space projection.

	Type

	pyproj.Proj object

	
grid_xyz

	Positions of the grid nodes in the grid coordinate space. The shape of
each element of the list is defined by the number of nodes in each
dimension.

	Type

	array-like, shape (3, nx, ny, nz)

	
ll_corner

	Location of the lower-left corner of the grid in the grid
projection. Should also contain the minimum depth in the grid.

	Type

	array-like, [float, float, float]

	
node_count

	Number of nodes in each dimension of the grid. This is calculated by
finding the number of nodes with a given node spacing that fit between
the lower-left and upper-right corners. This value is rounded up if the
number of nodes returned is non-integer, to ensure the requested area
is included in the grid.

	Type

	array-like, [int, int, int]

	
node_spacing

	Distance between nodes in each dimension of the grid.

	Type

	array-like, [float, float, float]

	
precision

	An appropriate number of decimal places for distances as a function of
the node spacing and coordinate projection.

	Type

	list of float

	
unit_conversion_factor

	A conversion factor based on the grid projection, used to convert
between units of metres and kilometres.

	Type

	float

	
unit_name

	Shorthand string for the units of the grid projection.

	Type

	str

	
ur_corner

	Location of the upper-right corner of the grid in the grid
projection. Should also contain the maximum depth in the grid.

	Type

	array-like, [float, float, float]

	
coord2grid(value, inverse=False, clip=False)

	Provides a transformation between the input projection and grid
coordinate spaces.

	
decimate(df, inplace=False)

	Downsamples the traveltime lookup tables by some decimation factor.

	
index2coord(value, inverse=False, unravel=False, clip=False)

	Provides a transformation between grid indices (can be a flattened
index or an [i, j, k] position) and the input projection coordinate
space.

	
index2grid(value, inverse=False, unravel=False)

	Provides a transformation between grid indices (can be a flattened
index or an [i, j, k] position) and the grid coordinate space.

	
cell_count

	Handler for deprecated attribute name ‘cell_count’

	
cell_size

	Handler for deprecated attribute name ‘cell_size’

	
coord2grid(value, inverse=False)

	Convert between input coordinate space and grid coordinate space.

	Parameters

	
	value (array-like) – Array (of arrays) containing the coordinate locations to be
transformed. Each sub-array should describe a single point in the
3-D input space.

	inverse (bool, optional) – Reverses the direction of the transform.
Default input coordinates -> grid coordinates

	Returns

	out – Returns an array of arrays of the transformed values.

	Return type

	array-like

	
decimate(df, inplace=False)

	Resample the traveltime lookup tables by decimation by some factor.

	Parameters

	
	df (array-like [int, int, int]) – Decimation factor in each dimension.

	inplace (bool, optional) – Perform the operation on the lookup table object or a copy.

	Returns

	grid – Returns a Grid3D object with decimated traveltime lookup tables.

	Return type

	Grid3D object (optional)

	
get_grid_extent(cells=False)

	Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid
nodes. It is useful, for visualisation purposes, to also be able to
determine the grid extent as the convex hull of a grid of cells centred
on the grid nodes.

	Parameters

	cells (bool, optional) – Specifies the grid mode (nodes / cells) for which to calculate the
extent.

	Returns

	extent – Pair of arrays representing two corners for the grid.

	Return type

	array-like

	
grid_corners

	Get the xyz positions of the nodes on the corners of the grid.

	
grid_extent

	Get the minimum/maximum extent of each dimension of the grid.

The default returns the grid extent as the convex hull of the grid
nodes. It is useful, for visualisation purposes, to also be able to
determine the grid extent as the convex hull of a grid of cells centred
on the grid nodes.

	Parameters

	cells (bool, optional) – Specifies the grid mode (nodes / cells) for which to calculate the
extent.

	Returns

	extent – Pair of arrays representing two corners for the grid.

	Return type

	array-like

	
grid_xyz

	Get the xyz positions of all of the nodes in the grid.

	
index2coord(value, inverse=False, unravel=False)

	Convert between grid indices and input coordinate space.

This is a utility function that wraps the other two defined transforms.

	Parameters

	
	value (array-like) – Array (of arrays) containing the grid indices (grid coordinates)
to be transformed. Can be an array of flattened indices.

	inverse (bool, optional) – Reverses the direction of the transform.
Default indices -> input projection coordinates.

	unravel (bool, optional) – Convert a flat index or array of flat indices into a tuple of
coordinate arrays.

	Returns

	out – Returns an array of arrays of the transformed values.

	Return type

	array-like

	
index2grid(value, inverse=False, unravel=False)

	Convert between grid indices and grid coordinate space.

	Parameters

	
	value (array-like) – Array (of arrays) containing the grid indices (grid coordinates)
to be transformed. Can be an array of flattened indices.

	inverse (bool, optionale) – Reverses the direction of the transform.
Default indices -> grid coordinates.

	unravel (bool, optional) – Convert a flat index or array of flat indices into a tuple of
coordinate arrays.

	Returns

	out – Returns an array of arrays of the transformed values.

	Return type

	array-like

	
node_count

	Get and set the number of nodes in each dimension of the grid.

	
node_spacing

	Get and set the spacing of nodes in each dimension of the grid.

	
precision

	Get appropriate number of decimal places as a function of the
node spacing and coordinate projection.

	
unit_conversion_factor

	Expose unit_conversion_factor of the grid projection.

	
unit_name

	Expose unit_name of the grid_projection and return shorthand.

	
class quakemigrate.lut.lut.LUT(fraction_tt=0.1, lut_file=None, **grid_spec)

	Bases: quakemigrate.lut.lut.Grid3D

A lookup table (LUT) object is a simple data structure that is used to
store a series of regularised tables that, for each seismic station in a
network, store the traveltimes to every point in the 3-D volume. These
lookup tables are pre-computed to reduce the computational cost of the
back-projection method.

This class provides utility functions that can be used to serve up or query
these pre-computed lookup tables.

This object is-a Grid3D.

	
fraction_tt

	An estimate of the uncertainty in the velocity model as a function of
a fraction of the traveltime. (Default 0.1 == 10%)

	Type

	float

	
max_traveltime

	The maximum traveltime between any station and a point in the grid.

	Type

	float

	
phases

	Seismic phases for which there are traveltime lookup tables available.

	Type

	list of str

	
stations_xyz

	Positions of the stations in the grid coordinate space.

	Type

	array-like, shape (n, 3)

	
traveltimes

	A dictionary containing the traveltime lookup tables. The structure of
this dictionary is:

	traveltimes

	
	
	“<Station1-ID>”

	
	“<PHASE>”

	“<PHASE>”

	
	“<Station2-ID”

	
	“<PHASE>”

	“<PHASE>”

etc

	Type

	dict

	
velocity_model

	Contains the input velocity model specification.

	Type

	~pandas.DataFrame object

	
serve_traveltimes(sampling_rate)

	Serve up the traveltime lookup tables.

	
traveltime_to(phase, ijk)

	Query traveltimes to a grid location (in terms of indices) for a
particular phase.

	
save(filename)

	Dumps the current state of the lookup table object to a pickle file.

	
load(filename)

	Restore the state of the saved LUT object from a pickle file.

	
plot(fig, gs, slices=None, hypocentre=None, station_clr="k")

	Plot cross-sections of the LUT with station locations. Optionally plot
slices through a coalescence volume.

	
load(filename)

	Read the contents of a pickle file and restore state of the lookup
table object.

	Parameters

	filename (str) – Path to pickle file to load.

	
max_extent

	Get the minimum/maximum geographical extent of the stations/grid.

	
max_traveltime

	Get the maximum traveltime from any station across the grid.

	
plot(fig, gs, slices=None, hypocentre=None, station_clr='k')

	Plot the lookup table for a particular station.

	Parameters

	
	fig (~matplotlib.Figure object) – Canvas on which LUT is plotted.

	gs (tuple(int, int)) – Grid specification for the plot.

	slices (array of arrays, optional) – Slices through a coalescence volume to plot.

	hypocentre (array of floats) – Event hypocentre - will add cross-hair to plot.

	station_clr (str, optional) – Plot the stations with a particular colour.

	
save(filename)

	Dump the current state of the lookup table object to a pickle file.

	Parameters

	filename (str) – Path to location to save pickled lookup table.

	
serve_traveltimes(sampling_rate)

	Serve up the traveltime lookup tables.

The traveltimes are multiplied by the scan sampling rate and converted
to integers.

	Parameters

	sampling_rate (int) – Samples per second used in the scan run.

	Returns

	traveltimes – Stacked traveltime lookup tables for all seismic phases, stacked
along the station axis, with shape(nx, ny, nz, nstations)

	Return type

	numpy.ndarray of numpy.int

	
station_extent

	Get the minimum/maximum extent of the seismic network.

	
stations_xyz

	Get station locations in the grid space [X, Y, Z].

	
traveltime_to(phase, ijk)

	Serve up the traveltimes to a grid location for a particular phase.

	Parameters

	
	phase (str) – The seismic phase to lookup.

	ijk (array-like) – Grid indices for which to serve traveltime.

	Returns

	traveltimes – Array of interpolated traveltimes to the requested grid position.

	Return type

	array-like

3.5. quakemigrate.plot

The quakemigrate.plot module provides methods for the generation of
figures in QuakeMigrate, including:

	Event summaries

	Phase pick summaries

	Triggered event summaries

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.5.1. quakemigrate.plot.event

Module containing methods to generate event summaries and videos.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.plot.event.event_summary(run, event, marginal_coalescence, lut, xy_files=None)

	Plots an event summary illustrating the locate results: slices through the
marginalised coalescence with the location estimates (best-fitting spline
to interpolated coalescence; Gaussian fit; covariance fit) and associated
uncertainties; a gather of the filtered station data, sorted by distance
from the event; and the maximum coalescence through time.

	Parameters

	
	run (Run object) – Light class encapsulating i/o path information for a given run.

	event (Event object) – Light class encapsulating signal, onset, and location information
for a given event.

	marginal_coalescence (~numpy.ndarray of ~numpy.double) – Marginalised 3-D coalescence map, shape(nx, ny, nz).

	lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed for
some pre-defined velocity model.

	xy_files (str, optional) – Path to comma-separated value file (.csv) containing a series of
coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”,
“Linestyle”], where “File” is the absolute path to the file containing
the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate
file should contain coordinates only, with columns: [“Longitude”,
“Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with # will be
treated as a comment - this can be used to include references. See the
Volcanotectonic_Iceland example XY_files for a template.

Note

Do not include a header line in either file.

3.5.2. quakemigrate.plot.phase_picks

Module to produce a summary plot for the phase picking.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.plot.phase_picks.pick_summary(event, station, signal, picks, onsets, ttimes, window)

	Plot figure showing the filtered traces for each data component and the
characteristic functions calculated from them (P and S) for each
station. The search window to make a phase pick is displayed, along
with the dynamic pick threshold (defined as a percentile of the
background noise level), the phase pick time and its uncertainty (if
made) and the Gaussian fit to the characteristic function.

	Parameters

	
	event (str) – Unique identifier for the event.

	station (str) – Station code.

	signal (numpy.ndarray of int) – Seismic data for the Z N and E components.

	picks (pandas DataFrame object) – Phase pick times with columns [“Name”, “Phase”, “ModelledTime”,
“PickTime”, “PickError”, “SNR”]
Each row contains the phase pick from one station/phase.

	onsets (numpy.ndarray of float) – Onset functions for each seismic phase, shape(nstations, nsamples).

	ttimes (list, [int, int]) – Modelled phase travel times.

	window (list, [int, int]) – Indices specifying the window within which the pick was made.

	Returns

	fig – Figure showing basic phase picking information.

	Return type

	matplotlib.Figure object

3.5.3. quakemigrate.plot.trigger

Module to plot the triggered events on a decimated grid.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
quakemigrate.plot.trigger.trigger_summary(events, starttime, endtime, run, marginal_window, min_event_interval, detection_threshold, normalise_coalescence, lut, data, region, savefig, discarded_events, xy_files=None)

	Plots the data from a .scanmseed file with annotations illustrating the
trigger results: event triggers and marginal windows on the coalescence
traces, and map and cross section view of the gridded triggered earthquake
locations.

	Parameters

	
	events (pandas.DataFrame) – Triggered events information, columns: [“EventID”, “CoaTime”,
“TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “MinTime”, “MaxTime”, “COA”,
“COA_NORM”].

	starttime (obspy.UTCDateTime) – Start time of trigger run.

	endtime (obspy.UTCDateTime) – End time of trigger run.

	run (Run object) – Light class encapsulating i/o path information for a given run.

	marginal_window (float) – Estimate of time error over which to marginalise the coalescence.

	min_event_interval (float) – Minimum time interval between triggered events.

	detection_threshold (array-like) – Coalescence value above which to trigger events.

	normalise_coalescence (bool) – If True, use coalescence normalised by the average background noise.

	lut (LUT object) – Contains the traveltime lookup tables for P- and S-phases, computed for
some pre-defined velocity model.

	data (pandas.DataFrame) – Data output by detect() – decimated scan, columns [“COA”, “COA_N”,
“X”, “Y”, “Z”]

	region (list) – Geographical region within which earthquakes have been triggered.

	savefig (bool) – Output the plot as a file. The plot is shown by default, and not saved.

	discarded_events (pandas.DataFrame) – Discarded triggered events information, columns: [“EventID”, “CoaTime”,
“TRIG_COA”, “COA_X”, “COA_Y”, “COA_Z”, “MinTime”, “MaxTime”, “COA”,
“COA_NORM”].

	xy_files (str, optional) – Path to comma-separated value file (.csv) containing a series of
coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”,
“Linestyle”], where “File” is the absolute path to the file containing
the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate
file should contain coordinates only, with columns: [“Longitude”,
“Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with # will be
treated as a comment - this can be used to include references. See the
Volcanotectonic_Iceland example XY_files for a template.

Note

Do not include a header line in either file.

3.6. quakemigrate.signal

The quakemigrate.signal module handles the core of the QuakeMigrate
methods. This includes:

	Generation of onset functions from raw data.

	Picking of waveforms from onset functions.

	Raw scan for detect and locate.

	Measurement of amplitudes and calculation of local earthquake magnitudes.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.6.1. Subpackages

	3.6.1.1. quakemigrate.signal.onsets
	3.6.1.1.1. quakemigrate.signal.onsets.base

	3.6.1.1.2. quakemigrate.signal.onsets.stalta

	3.6.1.2. quakemigrate.signal.pickers
	3.6.1.2.1. quakemigrate.signal.pickers.base

	3.6.1.2.2. quakemigrate.signal.pickers.gaussian

	3.6.1.3. quakemigrate.signal.local_mag
	3.6.1.3.1. quakemigrate.signal.local_mag.local_mag

	3.6.1.3.2. quakemigrate.signal.local_mag.amplitude

	3.6.1.3.3. quakemigrate.signal.local_mag.magnitude

3.6.2. quakemigrate.signal.scan

Module to perform core QuakeMigrate functions: detect() and locate().

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.scan.QuakeScan(archive, lut, onset, run_path, run_name, **kwargs)

	Bases: object

QuakeMigrate scanning class.

Provides an interface for the wrapped compiled C functions, used to perform
the continuous scan (detect) or refined event migrations (locate).

	Parameters

	
	archive (Archive object) – Details the structure and location of a data archive and provides
methods for reading data from file.

	lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed for
some pre-defined velocity model.

	onset (Onset object) – Provides callback methods for calculation of onset functions.

	run_path (str) – Points to the top level directory containing all input files, under
which the specific run directory will be created.

	run_name (str) – Name of the current QuakeMigrate run.

	kwargs (**dict) – See QuakeScan Attributes for details. In addition to these:

	
continuous_scanmseed_write

	Option to continuously write the .scanmseed file output by detect() at
the end of every time step. Default behaviour is to write in day chunks
where possible. Default: False.

	Type

	bool

	
cut_waveform_format

	File format used when writing waveform data. We support any format also
supported by ObSpy - “MSEED” (default), “SAC”, “SEGY”, “GSE2”.

	Type

	str, optional

	
log

	Toggle for logging. If True, will output to stdout and generate a
log file. Default is to only output to stdout.

	Type

	bool, optional

	
loglevel

	Toggle to set the logging level: “debug” will print out additional
diagnostic information to the log and stdout. (Default “info”)

	Type

	{“info”, “debug”}, optional

	
mags

	Provides methods for calculating local magnitudes, performed during
locate.

	Type

	LocalMag object, optional

	
marginal_window

	Half-width of window centred on the maximum coalescence time. The
4-D coalescence functioned is marginalised over time across this window
such that the earthquake location and associated uncertainty can be
appropriately calculated. It should be an estimate of the time
uncertainty in the earthquake origin time, which itself is some
combination of the expected spatial uncertainty and uncertainty in the
seismic velocity model used. Default: 2 seconds.

	Type

	float, optional

	
picker

	Provides callback methods for phase picking, performed during locate.

	Type

	PhasePicker object, optional

	
plot_event_summary

	Plot event summary figure - see quakemigrate.plot for more details.
Default: True.

	Type

	bool, optional

	
plot_event_video

	Plot coalescence video for each located earthquake. Default: False.

	Type

	bool, optional

	
post_pad

	Additional amount of data to read in after the timestep, used to
ensure the correct coalescence is calculated at every sample.

	Type

	float

	
pre_pad

	Additional amount of data to read in before the timestep, used to
ensure the correct coalescence is calculated at every sample.

	Type

	float

	
run

	Light class encapsulating i/o path information for a given run.

	Type

	Run object

	
sampling_rate

	Desired sampling rate of input data; sampling rate at which to compute
the coalescence function. Default: 50 Hz.

	Type

	int, optional

	
threads

	The number of threads for the C functions to use on the executing host.
Default: 1 thread.

	Type

	int, optional

	
timestep

	Length (in seconds) of timestep used in detect(). Note: total detect
run duration should be divisible by timestep. Increasing timestep will
increase RAM usage during detect, but will slightly speed up overall
detect run. Default: 120 seconds.

	Type

	float, optional

	
write_cut_waveforms

	Write raw cut waveforms for all data found in the archive for each
event located by locate(). Default: False.
Note: this data has not been processed or quality-checked!

	Type

	bool, optional

	
xy_files

	Path to comma-separated value file (.csv) containing a series of
coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”,
“Linestyle”], where “File” is the absolute path to the file containing
the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate
file should contain coordinates only, with columns: [“Longitude”,
“Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with # will be
treated as a comment - this can be used to include references. See the
Volcanotectonic_Iceland example XY_files for a template.

Note

Do not include a header line in either file.

	Type

	str, optional

	
+++ TO BE REMOVED TO ARCHIVE CLASS +++

	

	
pre_cut

	Specify how long before the event origin time to cut the waveform
data from

	Type

	float, optional

	
post_cut

	Specify how long after the event origin time to cut the waveform
data to

	Type

	float, optional

	
+++ TO BE REMOVED TO ARCHIVE CLASS +++

	

	
detect(starttime, endtime)

	Core detection method – compute decimated 3-D coalescence continuously
throughout entire time period; output as .scanmseed (in mSEED format).

	
locate(starttime, endtime) or locate(file)

	Core locate method – compute 3-D coalescence over short time window
around candidate earthquake triggered from coastream; output location &
uncertainties (.event file), phase picks (.picks file), plus multiple
optional plots / data for further analysis and processing.

	Raises

	
	OnsetTypeError – If an object is passed in through the onset argument that does not
derive from the Onset base class.

	PickerTypeError – If an object is passed in through the picker argument that does not
derive from the PhasePicker base
class.

	RuntimeError – If the user does not supply the locate function with valid arguments.

	TimeSpanException – If the user supplies a starttime that is after the endtime.

	NoMagObjectError – If the user selects to calculate magnitudes but does not provide a
LocalMag object.

	
detect(starttime, endtime)

	Scans through continuous data calculating coalescence on a (decimated)
3-D grid by back-migrating onset (characteristic) functions.

	Parameters

	
	starttime (str) – Timestamp from which to run continuous scan (detect).

	endtime (str) – Timestamp up to which to run continuous scan (detect).
Note: the last sample returned will be that which immediately
precedes this timestamp.

	
locate(starttime=None, endtime=None, trigger_file=None)

	Re-computes the 3-D coalescence on an undecimated grid for a short
time window around each candidate earthquake triggered from the
(decimated) continuous detect scan. Calculates event location and
uncertainties, makes phase arrival picks, plus multiple optional
plotting / data outputs for further analysis and processing.

	Parameters

	
	starttime (str, optional) – Timestamp from which to include events in the locate scan.

	endtime (str, optional) – Timestamp up to which to include events in the locate scan.

	trigger_file (str, optional) – File containing triggered events to be located.

	
n_cores

	Handler for deprecated attribute name ‘n_cores’

	
sampling_rate

	Get sampling_rate

	
time_step

	Handler for deprecated attribute name ‘time_step’

3.6.3. quakemigrate.signal.trigger

Module to perform the trigger stage of QuakeMigrate.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.trigger.Trigger(lut, run_path, run_name, **kwargs)

	Bases: object

QuakeMigrate triggering class.

Triggers candidate earthquakes from the maximum coalescence through time
data output by the decimated detect scan, ready to be run through locate().

	Parameters

	
	lut (LUT object) – Contains the traveltime lookup tables for P- and S-phases, computed for
some pre-defined velocity model.

	run_path (str) – Points to the top level directory containing all input files, under
which the specific run directory will be created.

	run_name (str) – Name of the current QuakeMigrate run.

	kwargs (**dict) – See Trigger Attributes for details. In addition to these:
log : bool, optional

Toggle for logging. If True, will output to stdout and generate a
log file. Default is to only output to stdout.

	loglevel{“info”, “debug”}, optional

	Toggle to set the logging level: “debug” will print out additional
diagnostic information to the log and stdout. (Default “info”)

	trigger_namestr

	Optional name of a sub-run - useful when testing different trigger
parameters, for example.

	
mad_window_length

	Length of window within which to calculate the Median Average
Deviation. Default: 3600 seconds (1 hour).

	Type

	float, optional

	
mad_multiplier

	A scaling factor for the MAD output to make the calculated MAD factor
a consistent estimation of the standard deviation of the distribution.
Default: 1.4826, which is the appropriate scaling factor for a normal
distribution.

	Type

	float, optional

	
marginal_window

	Time window over which to marginalise the coalescence, making it solely
a function of the spatial dimensions. This should be an estimate of the
time error, as derived from an estimate of the spatial error and error
in the velocity model. Default: 2 seconds.

	Type

	float, optional

	
min_event_interval

	Minimum time interval between triggered events. Must be at least twice
the marginal window. Default: 4 seconds.

	Type

	float, optional

	
normalise_coalescence

	If True, triggering is performed on the maximum coalescence normalised
by the mean coalescence value in the 3-D grid. Default: False.

	Type

	bool, optional

	
pad

	Additional time padding to ensure events close to the starttime/endtime
are not cut off and missed. Default: 120 seconds.

	Type

	float, optional

	
run

	Light class encapsulating i/o path information for a given run.

	Type

	Run object

	
static_threshold

	Static threshold value above which to trigger candidate events.

	Type

	float, optional

	
threshold_method

	Toggle between a “static” threshold and a “dynamic” threshold, based on
the Median Average Deviation. Default: “static”.

	Type

	str, optional

	
xy_files

	Path to comma-separated value file (.csv) containing a series of
coordinate files to plot. Columns: [“File”, “Color”, “Linewidth”,
“Linestyle”], where “File” is the absolute path to the file containing
the coordinates to be plotted. E.g:
“/home/user/volcano_outlines.csv,black,0.5,-“. Each .csv coordinate
file should contain coordinates only, with columns: [“Longitude”,
“Latitude”]. E.g.: “-17.5,64.8”. Lines pre-pended with # will be
treated as a comment - this can be used to include references. See the
Volcanotectonic_Iceland example XY_files for a template.

Note

Do not include a header line in either file.

	Type

	str, optional

	
trigger(starttime, endtime, region=None, savefig=True)

	Trigger candidate earthquakes from decimated detect scan results.

	Raises

	
	ValueError – If min_event_interval < 2 * marginal_window.

	InvalidThresholdMethodException – If an invalid threshold method is passed in by the user.

	TimeSpanException – If the user supplies a starttime that is after the endtime.

	
min_event_interval

	Get and set the minimum event interval.

	
minimum_repeat

	Handler for deprecated attribute name ‘minimum_repeat’.

	
trigger(starttime, endtime, region=None, savefig=True)

	Trigger candidate earthquakes from decimated scan data.

	Parameters

	
	starttime (str) – Timestamp from which to trigger.

	endtime (str) – Timestamp up to which to trigger.

	region (list of floats, optional) – Only write triggered events within this region to the triggered
events csv file (for use in locate.) Format is:

[Xmin, Ymin, Zmin, Xmax, Ymax, Zmax]

Units are longitude / latitude / metres (in positive-down frame).

	savefig (bool, optional) – Save triggered events figure (default) or open interactive view.

	Raises

	TimeSpanException – If starttime is after endtime.

	
quakemigrate.signal.trigger.calculate_mad(x, scale=1.4826)

	Calculates the Median Absolute Deviation (MAD) of the input array x.

	Parameters

	
	x (array-like) – Coalescence array in.

	scale (float, optional) – A scaling factor for the MAD output to make the calculated MAD factor
a consistent estimation of the standard deviation of the distribution.

	Returns

	scaled_mad – Array of scaled mean absolute deviation values for the input array, x,
scaled to provide an estimation of the standard deviation of the
distribution.

	Return type

	array-like

	
quakemigrate.signal.trigger.chunks2trace(a, new_shape)

	Create a trace filled with chunks of the same value.

	aarray-like

	Array of chunks.

	new_shapetuple of ints

	(number of chunks, chunk_length)

	barray-like

	Single array of values contained in a.

3.6.1.1. quakemigrate.signal.onsets

The quakemigrate.onsets module handles the generation of Onset
functions. The default method uses the ratio between the short-term and
long-term averages.

Feel free to contribute more Onset function options!

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.6.1.1.1. quakemigrate.signal.onsets.base

A simple abstract base class with method stubs to enable users to extend
QuakeMigrate with custom onset functions that remain compatible with the core
of the package.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.onsets.base.Onset(**kwargs)

	Bases: abc.ABC

QuakeMigrate default onset function class.

	
sampling_rate

	Desired sampling rate for input data; sampling rate at which the onset
functions will be computed.

	Type

	int

	
pre_pad

	Option to override the default pre-pad duration of data to read before
computing 4-D coalescence in detect() and locate().

	Type

	float, optional

	
post_pad

	Option to override the default post-pad duration of data to read before
computing 4-D coalescence in detect() and locate().

	Type

	float

	
calculate_onsets()

	Generate onset functions that represent seismic phase arrivals

	
calculate_onsets()

	Method stub for calculation of onset functions.

	
gaussian_halfwidth(phase)

	Method stub for Gaussian half-width estimate.

	
pad(timespan)

	Determine the number of samples needed to pre- and post-pad the
timespan.

	Parameters

	timespan (float) – The time window to pad.

	Returns

	
	pre_pad (float) – Option to override the default pre-pad duration of data to read
before computing 4-D coalescence in detect() and locate().

	post_pad (float) – Option to override the default post-pad duration of data to read
before computing 4-D coalescence in detect() and locate().

	
post_pad

	Get property stub for pre_pad.

	
pre_pad

	Get property stub for pre_pad.

3.6.1.1.2. quakemigrate.signal.onsets.stalta

The default onset function class - performs some pre-processing on raw
seismic data and calculates STA/LTA onset (characteristic) function.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.onsets.stalta.CentredSTALTAOnset(**kwargs)

	Bases: quakemigrate.signal.onsets.stalta.STALTAOnset

QuakeMigrate default onset function class - uses a centred STA/LTA onset.

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

	
class quakemigrate.signal.onsets.stalta.ClassicSTALTAOnset(**kwargs)

	Bases: quakemigrate.signal.onsets.stalta.STALTAOnset

QuakeMigrate default onset function class - uses a classic STA/LTA onset.

NOTE: THIS CLASS HAS BEEN DEPRECATED AND WILL BE REMOVED IN A FUTURE UPDATE

	
class quakemigrate.signal.onsets.stalta.STALTAOnset(**kwargs)

	Bases: quakemigrate.signal.onsets.base.Onset

QuakeMigrate default onset function class - uses a classic STA/LTA onset.

	
p_bp_filter

	Butterworth bandpass filter specification
[lowpass (Hz), highpass (Hz), corners*]
*NOTE: two-pass filter effectively doubles the number of corners.

	Type

	array-like, [float, float, int]

	
s_bp_filter

	Butterworth bandpass filter specification
[lowpass (Hz), highpass (Hz), corners*]
*NOTE: two-pass filter effectively doubles the number of corners.

	Type

	array-like, [float, float, int]

	
p_onset_win

	P onset window parameters
[STA, LTA] (both in seconds)

	Type

	array-like, [float, float]

	
s_onset_win

	S onset window parameters
[STA, LTA] (both in seconds)

	Type

	array-like, [float, float]

	
sampling_rate

	Desired sampling rate for input data, in Hz; sampling rate at which
the onset functions will be computed.

	Type

	int

	
pre_pad

	Option to override the default pre-pad duration of data to read
before computing 4-D coalescence in detect() and locate(). Default
value is calculated from the onset function parameters.

	Type

	float, optional

	
position

	Compute centred STA/LTA (STA window is preceded by LTA window;
value is assigned to end of LTA window / start of STA window) or
classic STA/LTA (STA window is within LTA window; value is assigned
to end of STA & LTA windows). Default: “classic”.

Centred gives less phase-shifted (late) onset function, and is
closer to a Gaussian approximation, but is far more sensitive to
data with sharp offsets due to instrument failures. We recommend
using classic for detect() and centred for locate() if your data
quality allows it. This is the default behaviour; override by
setting this variable.

	Type

	str, optional

	
calculate_onsets()

	Generate onset functions that represent seismic phase arrivals

	
calculate_onsets(data, log=True, run=None)

	Returns a stacked pair of onset (characteristic) functions for the P
and S phase arrivals.

	Parameters

	
	data (SignalData object) – Light class encapsulating data returned by an archive query.

	log (bool) – Calculate log(onset) if True, otherwise calculate the raw onset.

	run –

	
gaussian_halfwidth(phase)

	Return the phase-appropriate Gaussian half-width estimate based on the
short-term average window length.

	Parameters

	phase ({'P', 'S'}) – Seismic phase for which to serve the estimate.

	
onset_centred

	Handle deprecated onset_centred kwarg / attribute

	
post_pad

	Post-pad is determined as a function of the max traveltime in the
grid and the onset windows

	
pre_pad

	Pre-pad is determined as a function of the onset windows

	
quakemigrate.signal.onsets.stalta.pre_process(sig, sampling_rate, lc, hc, order=2)

	Detrend raw seismic data and apply cosine taper and zero phase-shift
Butterworth band-pass filter.

	Parameters

	
	sig (array-like) – Data signal to be pre-processed.

	sampling_rate (int) – Number of samples per second, in Hz.

	lc (float) – Lowpass frequency of band-pass filter, in Hz.

	hc (float) – Highpass frequency of band-pass filter, in Hz.

	order (int, optional) – Number of filter corners. NOTE: two-pass filter effectively doubles the
number of corners.

	Returns

	fsig – Filtered seismic data.

	Return type

	array-like

	Raises

	NyquistException – If the high-cut filter specified for the bandpass filter is higher than
the Nyquist frequency of the Waveform.signal data.

	
quakemigrate.signal.onsets.stalta.sta_lta_centred(a, nsta, nlta)

	Calculates the ratio of the average signal in a short-term (signal) window
to a preceding long-term (noise) window. STA/LTA value is assigned to the
end of the LTA / start of the STA.

	Parameters

	
	a (array-like) – Signal array

	nsta (int) – Number of samples in short-term window

	nlta (int) – Number of samples in long-term window

	Returns

	sta / lta – Ratio of short term average window to a preceding long term average
window. STA/LTA value is assigned to end of LTA window / start of STA
window – “centred”

	Return type

	array-like

	
quakemigrate.signal.onsets.stalta.sta_lta_onset(fsig, stw, ltw, position, log)

	Calculate STA/LTA onset (characteristic) function from pre-processed
seismic data.

	Parameters

	
	fsig (array-like) – Filtered (pre-processed) data signal to be used to generate an onset
function.

	stw (int) – Short term window length (# of samples).

	ltw (int) – Long term window length (# of samples)

	position (str) –
	“centred”: Compute centred STA/LTA (STA window is preceded by LTA

	window; value is assigned to end of LTA window / start of STA
window) or:

	”classic”: classic STA/LTA (STA window is within LTA window; value

	is assigned to end of STA & LTA windows).

Centred gives less phase-shifted (late) onset function, and is closer
to a Gaussian approximation, but is far more sensitive to data with
sharp offsets due to instrument failures. We recommend using classic
for detect() and centred for locate() if your data quality allows it.
This is the default behaviour; override by setting self.onset_centred.

	log (bool) – Will return log(onset) if True, otherwise it will return the raw onset.

	Returns

	onset – onset_raw or log(onset_raw); both are clipped between 0.8 and
infinity.

	Return type

	array-like

3.6.1.2. quakemigrate.signal.pickers

The quakemigrate.pickers module handles the picking of seismic phases.
The default method makes the phase picks by fitting a 1-D Gaussian to the Onset
function.

Feel free to contribute more phase picking methods!

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.6.1.2.1. quakemigrate.signal.pickers.base

A simple abstract base class with method stubs enabling simple modification of
QuakeMigrate to use custom phase picking methods that remain compatible with
the core of the package.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.pickers.base.PhasePicker(**kwargs)

	Bases: abc.ABC

Abstract base class providing a simple way of modifying the default
picking function in QuakeMigrate.

	
plot_picks

	Toggle plotting of phase picks.

	Type

	bool

	
pick_phases()

	Abstract method stub providing interface with QuakeMigrate scan.

	
write(event_uid, phase_picks, output)

	Outputs phase picks to file.

	
plot()

	Method stub for phase pick plotting.

	
pick_phases()

	Method stub for phase picking.

	
plot()

	Method stub for phase pick plotting.

	
write(run, event_uid, phase_picks)

	Write phase picks to a new .picks file.

	Parameters

	
	event_uid (str) – Unique identifier for the event.

	phase_picks (pandas DataFrame object) –
	Phase pick times with columns: [“Name”, “Phase”,

	”ModelledTime”,
“PickTime”, “PickError”,
“SNR”]

Each row contains the phase pick from one station/phase.

	output (QuakeMigrate input/output control object) – Contains useful methods controlling output for the scan.

3.6.1.2.2. quakemigrate.signal.pickers.gaussian

The default seismic phase picking class - fits a 1-D Gaussian to the calculated
onset functions.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.pickers.gaussian.GaussianPicker(onset=None, **kwargs)

	Bases: quakemigrate.signal.pickers.base.PhasePicker

This class details the default method of making phase picks shipped with
QuakeMigrate, namely fitting a 1-D Gaussian function to the STA/LTA onset
function trace for each station.

	
phase_picks

	
	“GAU_P”array-like

	Numpy array stack of Gaussian pick info (each as a dict)
for P phase

	“GAU_S”array-like

	Numpy array stack of Gaussian pick info (each as a dict)
for S phase

	Type

	dict

	
pick_threshold

	Picks will only be made if the onset function exceeds this percentile
of the noise level (average amplitude of onset function outside pick
windows). Recommended starting value: 1.0

	Type

	float (between 0 and 1)

	
plot_picks

	Toggle plotting of phase picks.

	Type

	bool

	
pick_phases(data, lut, event, event_uid, output)

	Picks phase arrival times for located earthquakes by fitting a 1-D
Gaussian function to the P and S onset functions

	
DEFAULT_GAUSSIAN_FIT = {'PickValue': -1, 'popt': 0, 'xdata': 0, 'xdata_dt': 0}

	

	
fraction_tt

	Handler for deprecated attribute ‘fraction_tt’

	
pick_phases(event, lut, run)

	Picks phase arrival times for located earthquakes.

	Parameters

	
	event (Event object) – Contains pre-processed waveform data on which to perform picking,
the event location, and a unique identifier.

	lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

	run (Run object) – Light class encapsulating i/o path information for a given run.

	Returns

	
	event (Event object) – Event object provided to pick_phases(), but now with phase picks!

	picks (pandas.DataFrame) – DataFrame that contains the measured picks with columns:
[“Name”, “Phase”, “ModelledTime”, “PickTime”, “PickError”, “SNR”]
Each row contains the phase pick from one station/phase.

	
plot(event, lut, picks, ttimes, run)

	Plot figure showing the filtered traces for each data component and the
characteristic functions calculated from them (P and S) for each
station. The search window to make a phase pick is displayed, along
with the dynamic pick threshold (defined as a percentile of the
background noise level), the phase pick time and its uncertainty (if
made) and the Gaussian fit to the characteristic function.

	Parameters

	event_uid (str, optional) – Earthquake UID string; for subdirectory naming within directory
{run_path}/traces/

3.6.1.3. quakemigrate.signal.local_mag

The quakemigrate.local_mag extension module handles the calculation of
local magnitudes from Wood-Anderson simulated waveforms.

Warning

The local_mag modules are an ongoing work in progress. We hope to

continue to extend their functionality, which may result in some API changes.
If you have comments or suggestions, please contact the QuakeMigrate developers

at quakemigrate.developers@gmail.com , or submit an issue on GitHub.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

3.6.1.3.1. quakemigrate.signal.local_mag.local_mag

Module containing methods to calculate the local magnitude for an event located
by QuakeMigrate.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.local_mag.local_mag.LocalMag(amp_params, mag_params, plot_amplitudes=True)

	Bases: object

QuakeMigrate extension class for calculating local magnitudes.

Provides functions for measuring amplitudes of earthquake waveforms and
using these to calculate local magnitudes.

	Parameters

	
	amp_params (dict) – All keys are optional, including:
pre_filt : tuple of floats

Pre-filter to apply during the instrument response removal. E.g.
(0.03, 0.05, 30., 35.) - all in Hz. (Default None)

	water_levelfloat

	Water level to use in instrument response removal. (Default 60)

	signal_windowfloat

	Length of S-wave signal window, in addition to the time window
associated with the marginal_window and traveltime uncertainty.
(Default 0 s)

	noise_windowfloat

	Length of the time window before the P-wave signal window in which
to measure the noise amplitude. (Default 10 s)

	noise_measure{“RMS”, “STD”}

	Method by which to measure the noise amplitude; root-mean-quare or
standard deviation of the signal. (Default “RMS”)

	loc_method{“spline”, “gaussian”, “covariance”}

	Which event location estimate to use. (Default “spline”)

	remove_full_responsebool

	Whether to remove the full response (including the effect of
digital FIR filters) or just the instrument transform function (as
defined by the PolesZeros Response Stage. Significantly slower.
(Default False)

	highpass_filterbool

	Whether to apply a highpass filter to the data before measuring
amplitudes. (Default False)

	highpass_freqfloat

	High-pass filter frequency. Required if highpass_filter is True.

	bandpass_filterbool

	Whether to apply a band-pass filter before measuring amplitudes.
(Default: False)

	bandpass_lowcutfloat

	Band-pass filter low-cut frequency. Required if bandpass_filter is
True.

	bandpass_highcutfloat

	Band-pass filter high-cut frequency. Required if bandpass_filter is
True.

	filter_cornersint

	Number of corners for the chosen filter. Default: 4.

	prominence_multiplierfloat

	To set a prominence filter in the peak-finding algorithm.
(Default 0. = off).
NOTE: not recommended for use in combination with a filter; filter
gain corrections can lead to spurious results. Please see the
scipy.signal.find_peaks documentation for further guidance.

	mag_params (dict) – Required keys:
A0 : str or func

Name of the attenuation function to use. Available options include
{“Hutton-Boore”, “keir2006”, “UK”, …}. Alternatively specify a
function which returns the attenuation factor at a specified
(epicentral or hypocentral) distance. (Default “Hutton-Boore”)

All other keys are optional, including:
station_corrections : dict {str : float}

Dictionary of trace_id : magnitude-correction pairs. (Default None)

	amp_feature{“S_amp”, “P_amp”}

	Which phase amplitude measurement to use to calculate local
magnitude. (Default “S_amp”)

	amp_multiplierfloat

	Factor by which to multiply all measured amplitudes.

	use_hyp_distbool, optional

	Whether to use the hypocentral distance instead of the epicentral
distance in the local magnitude calculation. (Default False)

	trace_filterregex expression

	Expression by which to select traces to use for the mean_magnitude
calculation. E.g. ‘.*H[NE]$’. (Default None)

	station_filterlist of str

	List of stations to exclude from the mean_magnitude calculation.
E.g. [“KVE”, “LIND”]. (Default None)

	dist_filterfloat or False

	Whether to only use stations less than a specified (epicentral or
hypocentral) distance from an event in the mean_magnitude()
calculation. Distance in kilometres. (Default False)

	pick_filterbool

	Whether to only use stations where at least one phase was picked by
the autopicker in the mean_magnitude calculation. (Default False)

	noise_filterfloat

	Factor by which to multiply the measured noise amplitude before
excluding amplitude observations below the noise level.
(Default 1.)

	weighted_meanbool

	Whether to do a weighted mean of the magnitudes when calculating
the mean_magnitude. (Default False)

	plot_amplitudes (bool, optional) – Plot amplitudes vs. distance plot for each event. (Default True)

	
amp

	The Amplitude object for this instance of LocalMag. Contains functions
to measure Wood-Anderson corrected displacement amplitudes for an
event.

	Type

	Amplitude object

	
mag

	The Magnitude object for this instance of LocalMag. Contains functions
to calculate magnitudes from Wood-Anderson corrected displacement
amplitudes, and to combine them into a single magnitude estimate for
the event.

	Type

	Magnitude object

	
calc_magnitude(event, lut, run)

	

	
calc_magnitude(event, lut, run)

	Wrapper function to calculate the local magnitude of an event by first
making Wood-Anderson corrected displacement amplitude measurements on
each trace, then calculating magnitudes from these individual
measurements, and a network-averaged (weighted) mean magnitude
estimate and associated uncertainty.

Additional functionality includes calculating an r^2 fit of the
predicted amplitude with distance curve to the observed amplitudes,
and an associated plot of amplitudes vs. distance.

	Parameters

	
	event (Event object) – Light class encapsulating waveform data, onset, pick and location
information for a given event.

	lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

	run (Run object) – Light class encapsulating i/o path information for a given run.

	Returns

	
	event (Event object) – Light class encapsulating waveform data, onset, pick and location
information for a given event. Now also contains local magnitude
information.

	mag (float) – Network-averaged local magnitude estimate for this event.

3.6.1.3.2. quakemigrate.signal.local_mag.amplitude

Module containing methods to measure Wood-Anderson corrected waveform
amplitudes to be used for local magnitude calculation.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.local_mag.amplitude.Amplitude(amplitude_params={})

	Bases: object

Part of the QuakeMigrate LocalMag class; measures Wood-Anderson corrected
waveform amplitudes to be used for local magnitude calculation.

Simulates the Wood-Anderson waveforms using a user-supplied set of response
removal parameters, then measures the maximum peak-to-trough amplitude in
time windows around the P and S phase arrivals. These windows are
calculated from the phase pick times from the autopicker, if available, or
from the modelled pick times. The length of the S-wave signal window is
calculated according to a user-specified signal_window parameter.

The user may optionally specify a filter to apply to the waveforms before
amplitudes are measured, in order (for example) to reduce the impact of
high-amplitude noise associated with the oceanic microseisms on the
measurement of low-amplitude wavetrains associated with microseismic
events. Note this will generally result in an underestimate of the true
earthquake waveform amplitude, even when the filter gain is corrected for.

A measurement of the signal amplitude in a window preceding the P-wave
arrival is used to characterise the “noise” amplitude. This can be used
to filter out null observations, and to provide an estimate of the
uncertainty on the max amplitude measurements contributed by extraneous
noise.

	
pre_filt

	Pre-filter to apply during the instrument response removal. E.g.
(0.03, 0.05, 30., 35.) - all in Hz. (Default None)

	Type

	tuple of floats

	
water_level

	Water level to use in instrument response removal. (Default 60.)

	Type

	float

	
signal_window

	Length of S-wave signal window, in addition to the time window
associated with the marginal_window and traveltime uncertainty.
(Default 0 s)

	Type

	float

	
noise_window

	Length of the time window before the P-wave signal window in which
to measure the noise amplitude. (Default 5 s)

	Type

	float

	
noise_measure

	Method by which to measure the noise amplitude; root-mean-quare or
standard deviation of the signal. (Default “RMS”)

	Type

	{“RMS”, “STD”}

	
loc_method

	Which event location estimate to use. (Default “spline”)

	Type

	{“spline”, “gaussian”, “covariance”}

	
remove_full_response

	Whether to remove the full response (including the effect of
digital FIR filters) or just the instrument transform function (as
defined by the PolesZeros Response Stage). Significantly slower.
(Default False)

	Type

	bool

	
highpass_filter

	Whether to apply a high-pass filter before measuring amplitudes.
(Default False)

	Type

	bool

	
highpass_freq

	High-pass filter frequency. Required if highpass_filter is True.

	Type

	float

	
bandpass_filter

	Whether to apply a band-pass filter before measuring amplitudes.
(Default False)

	Type

	bool

	
bandpass_lowcut

	Band-pass filter low-cut frequency. Required if bandpass_filter is
True.

	Type

	float

	
bandpass_highcut

	Band-pass filter high-cut frequency. Required if bandpass_filter is
True.

	Type

	float

	
filter_corners

	number of corners for the chosen filter. (Default 4)

	Type

	int

	
prominence_multiplier

	To set a prominence filter in the peak-finding algorithm.
(Default 0. = off)
NOTE: not recommended for use in combination with a filter; filter gain
corrections can lead to spurious results. Please see the
scipy.signal.find_peaks documentation for further guidance.

	Type

	float

	
get_amplitudes(event, lut)

	

	Raises

	AttributeError – If both highpass_filter and bandpass_filter are selected, or if the
user selects to apply a filter but does not provide the relevant
frequencies.

	
get_amplitudes(event, lut)

	Measure phase amplitudes for an event.

	Parameters

	
	event (Event object) – Light class encapsulating waveform data, onset, pick and location
information for a given event.

	lut (LUT object) – Contains the traveltime lookup tables for seismic phases, computed
for some pre-defined velocity model.

	Returns

	amplitudes – P- and S-wave amplitude measurements for each component of each
station in the station file.
Columns:

	epi_distfloat

	Epicentral distance between the station and the event
hypocentre.

	z_distfloat

	Vertical distance between the station and the event
hypocentre.

	P_ampfloat

	Half maximum peak-to-trough amplitude in the P signal
window. In millimetres.

	P_freqfloat

	Approximate frequency of the maximum amplitude P-wave
signal. Calculated from the peak-to-trough time of the max
peak-to-trough amplitude.

	P_timeobspy.UTCDateTime object

	Approximate time of amplitude observation (halfway between
peak and trough times).

	S_ampfloat

	As for P, but in the S wave signal window.

	S_freqfloat

	As for P.

	S_timeobspy.UTCDateTime object

	As for P.

	Noise_ampfloat

	An estimate of the signal amplitude in the noise window. In
millimetres.

	is_pickedbool

	Whether at least one of the phase arrivals was picked by
the autopicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

	Return type

	pandas.DataFrame object

3.6.1.3.3. quakemigrate.signal.local_mag.magnitude

Module that supplies functions to calculate magnitudes from observations of
trace amplitudes, earthquake location, station locations, and an estimated
attenuation curve for the region of interest.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
class quakemigrate.signal.local_mag.magnitude.Magnitude(magnitude_params={})

	Bases: object

Part of the QuakeMigrate LocalMag class; calculates local magnitudes from
Wood-Anderson corrected waveform amplitude measurements.

Takes waveform amplitude measurements from the LocalMag Amplitude class,
and from these calculates local magnitude estimates using a local magnitude
attenuation function. Magnitude corrections for individual stations and
channels thereof can be applied, if provided.

Individual estimates are then combined to calculate a network-averaged
(weighted) mean local magnitude for the event. Also includes the function
to measure the r-squared statistic assessing the goodness of fit between
the predicted amplitude with distance from the nework-averaged local
magnitude for the event and chosen attenuation function, and the observed
amplitudes. This, provides a tool to distinguish between real microseismic
events and artefacts.

A summary plot illustrating the amplitude observations, their
uncertainties, and the predicted amplitude with distance for the network-
averaged local magnitude (and its uncertainties) can optionally be output.

	
A0

	Name of the attenuation function to use. Available options include
{“Hutton-Boore”, “keir2006”, “UK”, …}. Alternatively specify a
function which returns the attenuation factor at a specified
(epicentral or hypocentral) distance. (Default “Hutton-Boore”)

	Type

	str or func

	
use_hyp_dist

	Whether to use the hypocentral distance instead of the epicentral
distance in the local magnitude calculation. (Default False)

	Type

	bool, optional

	
amp_feature

	Which phase amplitude measurement to use to calculate local
magnitude. (Default “S_amp”)

	Type

	{“S_amp”, “P_amp”}

	
station_corrections

	Dictionary of trace_id : magnitude-correction pairs. (Default None)

	Type

	dict {str : float}

	
amp_multiplier

	Factor by which to multiply all measured amplitudes.

	Type

	float

	
weighted_mean

	Whether to use a weighted mean to calculate the network-averaged
local magnitude estimate for the event. (Default False)

	Type

	bool

	
trace_filter

	Expression by which to select traces to use for the mean_magnitude
calculation. E.g. “.*H[NE]$” . (Default None)

	Type

	regex expression

	
noise_filter

	Factor by which to multiply the measured noise amplitude before
excluding amplitude observations below the noise level.
(Default 1.)

	Type

	float

	
station_filter

	List of stations to exclude from the mean_magnitude calculation.
E.g. [“KVE”, “LIND”]. (Default None)

	Type

	list of str

	
dist_filter

	Whether to only use stations less than a specified (epicentral or
hypocentral) distance from an event in the mean_magnitude()
calculation. Distance in kilometres. (Default False)

	Type

	float or False

	
pick_filter

	Whether to only use stations where at least one phase was picked by
the autopicker in the mean_magnitude calculation. (Default False)

	Type

	bool

	
calculate_magnitudes(amplitudes)

	

	
mean_magnitude(magnitudes)

	

	
plot_amplitudes(event, run)

	

	Raises

	
	AttributeError – If the user does not specify an A0 attenuation curve.

	ValueError – If the user specifies an invalid A0 attenuation curve.

	
calculate_magnitudes(amplitudes)

	Calculate magnitude estimates from amplitude measurements on
individual stations / components.

	Parameters

	amplitudes (pandas.DataFrame object) – P- and S-wave amplitude measurements for each component of each
station in the station file.
Columns:

	epi_distfloat

	Epicentral distance between the station and the event
hypocentre.

	z_distfloat

	Vertical distance between the station and the event
hypocentre.

	P_ampfloat

	Half maximum peak-to-trough amplitude in the P signal
window. In millimetres.

	P_freqfloat

	Approximate frequency of the maximum amplitude P-wave
signal. Calculated from the peak-to-trough time of the max
peak-to-trough amplitude.

	P_timeobspy.UTCDateTime object

	Approximate time of amplitude observation (halfway between
peak and trough times).

	S_ampfloat

	As for P, but in the S wave signal window.

	S_freqfloat

	As for P.

	S_timeobspy.UTCDateTime object

	As for P.

	Noise_ampfloat

	An estimate of the signal amplitude in the noise window. In
millimetres.

	is_pickedbool

	Whether at least one of the phase arrivals was picked by
the autopicker.

Index = Trace ID (see obspy.Trace object property ‘id’)

	Returns

	magnitudes – The original amplitudes DataFrame, with columns containing the
calculated magnitude and an associated error now added.
Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”, “P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”,
“ML”, “ML_Err”]

Index = Trace ID (see obspy.Trace.id)
Additional fields:
ML : float

Magnitude calculated from the chosen amplitude measurement,
using the specified attenuation curve and station_corrections.

	ML_Errfloat

	estimate of the error on the calculated magnitude, based on
potential errors in the maximum amplitude measurement according
to the measured noise amplitude.

	Return type

	pandas.DataFrame object

	Raises

	AttributeError – If A0 attenuation correction is not specified.

	
mean_magnitude(magnitudes)

	Calculate the network-averaged local magnitude for an event based on
the magnitude estimates calculated from amplitude measurements made on
each component of each station.

The user may specify distance, station, channel and a number of other
filters to restrict which observations are included in this best
estimate of the local magnitude of the event.

	Parameters

	magnitudes (pandas.DataFrame) – Contains P- and S-wave amplitude measurements for each component of
each station in the station file, and local magnitude estimates
calculated from them (output by calculate_magnitudes()). Note that
the amplitude observations are raw, but the ML estimates derived
from them include station corrections, if provided.
Columns:

	epi_distfloat

	Epicentral distance between the station and the event
hypocentre.

	z_distfloat

	Vertical distance between the station and the event
hypocentre.

	P_ampfloat

	Half maximum peak-to-trough amplitude in the P signal
window. In millimetres.

	P_freqfloat

	Approximate frequency of the maximum amplitude P-wave
signal. Calculated from the peak-to-trough time of the max
peak-to-trough amplitude.

	P_timeobspy.UTCDateTime object

	Approximate time of amplitude observation (halfway between
peak and trough times).

	S_ampfloat

	As for P, but in the S wave signal window.

	S_freqfloat

	As for P.

	S_timeobspy.UTCDateTime object

	As for P.

	Noise_ampfloat

	An estimate of the signal amplitude in the noise window. In
millimetres.

	is_pickedbool

	Whether at least one of the phase arrivals was picked by
the autopicker.

	MLfloat

	Magnitude calculated from the chosen amplitude measurement,
using the specified attenuation curve and
station_corrections.

	ML_Errfloat

	estimate of the error on the calculated magnitude, based on
potential errors in the maximum amplitude measurement
according to the measured noise amplitude.

Index = Trace ID (see obspy.Trace object property ‘id’)

	Returns

	
	mean_mag (float or NaN) – Network-averaged local magnitude estimate for the event. Mean (or
weighted mean) of the magnitude estimates calculated from each
individual channel after optionally removing some observations
based on trace ID, distance, etcetera.

	mean_mag_err (float or NaN) – Standard deviation (or weighted standard deviation) of the
magnitude estimates calculated from individual channels which
contributed to the calculation of the (weighted) mean magnitude.

	mag_r_squared (float or NaN) – r-squared statistic describing the fit of the amplitude vs.
distance curve predicted by the calculated mean_mag and chosen
attenuation model to the measured amplitude observations. This is
intended to be used to help discriminate between ‘real’ events, for
which the predicted amplitude vs. distance curve should provide a
good fit to the observations, from artefacts, which in general will
not.

	
plot_amplitudes(magnitudes, event, run, unit_conversion_factor, noise_measure='RMS')

	Plot a figure showing the measured amplitude with distance vs.
predicted amplitude with distance derived from mean_mag and the chosen
attenuation model.

The amplitude observations (both for noise and signal amplitudes) are
corrected according to the same station corrections that were used in
calculating the individual local magnitude estimates that were used to
calculate the network-averaged local magnitude for the event.

	Parameters

	
	magnitudes (pandas.DataFrame object) – Contains P- and S-wave amplitude measurements for each component of
each station in the station file, and local magnitude estimates
calculated from them (output by calculate_magnitudes()). Note that
the amplitude observations are raw, but the ML estimates derived
from them include station corrections, if provided.
Columns = [“epi_dist”, “z_dist”, “P_amp”, “P_freq”, “P_time”,

”S_amp”, “S_freq”, “S_time”, “Noise_amp”, “is_picked”,
“ML”, “ML_Err”, “Noise_Filter”, “Trace_Filter”,
“Station_Filter”, “Dist_Filter”, “Dist”, “Used”]

	event (Event object) – Light class encapsulating waveform data, onset, pick, location and
local magnitude information for a given event.

	run (Run object) – Light class encapsulating i/o path information for a given run.

	unit_conversion_factor (float) – A conversion factor based on the lookup table grid projection, used
to ensure the location uncertainties have units of kilometres.

3.7. quakemigrate.util

Module that supplies various utility functions and classes.

	copyright

	2020, QuakeMigrate developers.

	license

	GNU General Public License, Version 3
(https://www.gnu.org/licenses/gpl-3.0.html)

	
exception quakemigrate.util.ArchiveEmptyException

	Bases: Exception

Custom exception to handle empty archive

	
exception quakemigrate.util.ArchiveFormatException

	Bases: Exception

Custom exception to handle case where Archive.format is not set.

	
exception quakemigrate.util.ArchivePathStructureError(archive_format)

	Bases: Exception

Custom exception to handle case where an invalid Archive path structure
is selected.

	
exception quakemigrate.util.BadUpfactorException(trace)

	Bases: Exception

Custom exception to handle case when the chosen upfactor does not create a
trace with a sampling rate that can be decimated to the target sampling
rate

	
exception quakemigrate.util.ChannelNameException(trace)

	Bases: Exception

Custom exception to handle case when waveform data header has channel names
which do not conform to the IRIS SEED standard.

	
exception quakemigrate.util.DataGapException

	Bases: Exception

Custom exception to handle case when all data has gaps for a given timestep

	
class quakemigrate.util.DateFormatter(fmt, precision=3)

	Bases: matplotlib.ticker.Formatter

Extend the matplotlib.ticker.Formatter class to allow for millisecond
precision when formatting a tick (in days since the epoch) with a
~datetime.datetime.strftime format string.

	
exception quakemigrate.util.InvalidThresholdMethodException

	Bases: Exception

Custom exception to handle case when the user has not selected a valid
threshold method.

	
exception quakemigrate.util.InvalidVelocityModelHeader(key)

	Bases: Exception

Custom exception to handle incorrect header columns in station file

	
exception quakemigrate.util.MagsTypeError

	Bases: Exception

Custom exception to handle case when an object has been provided to
calculate magnitudes during locate, but it isn’t supported.

	
exception quakemigrate.util.NoScanMseedDataException

	Bases: Exception

Custom exception to handle case when no .scanmseed files can be found by
read_coastream()

	
exception quakemigrate.util.NoStationAvailabilityDataException

	Bases: Exception

Custom exception to handle case when no .StationAvailability files can be
found by read_availability()

	
exception quakemigrate.util.NoTriggerFilesFound

	Bases: Exception

Custom exception to handle case when no trigger files are found during
locate. This can occur for one of two reasons - an entirely invalid time
period was used (i.e. one that does not overlap at all with a period of
time for which there exists TriggeredEvents.csv files) or an invalid run
name was provided.

	
exception quakemigrate.util.NyquistException(freqmax, f_nyquist, tr_id)

	Bases: Exception

Custom exception to handle the case where the specified filter has a
lowpass corner above the signal Nyquist frequency.

	Parameters

	
	freqmax (float) – Specified lowpass frequency for filter

	f_nyquist (float) – Nyquist frequency for the relevant waveform data

	tr_id (str) – ID string for the Trace

	
exception quakemigrate.util.OnsetTypeError

	Bases: Exception

Custom exception to handle case when the onset object passed to QuakeScan
is not of the default type defined in QuakeMigrate.

	
exception quakemigrate.util.PeakToTroughError(err)

	Bases: Exception

Custom exception to handle case when amplitude._peak_to_trough_amplitude
encounters an anomalous set of peaks and troughs, so can’t calculate an
amplitude.

	
exception quakemigrate.util.PickOrderException(event_uid, station, p_pick, s_pick)

	Bases: Exception

Custom exception to handle the case when the pick for the P phase is later
than the pick for the S phase.

	
exception quakemigrate.util.PickerTypeError

	Bases: Exception

Custom exception to handle case when the phase picker object passed to
QuakeScan is not of the default type defined in QuakeMigrate.

	
exception quakemigrate.util.ResponseNotFoundError(e, tr_id)

	Bases: Exception

Custom exception to handle the case where the provided response inventory
doesn’t contain the response information for a trace.

	Parameters

	
	e (str) – Error message from ObsPy Inventory.get_response()

	tr_id (str) – ID string for the Trace for which the response cannot be found

	
exception quakemigrate.util.ResponseRemovalError(e, tr_id)

	Bases: Exception

Custom exception to handle the case where the response removal was not
successful.

	Parameters

	
	e (str) – Error message from ObsPy Trace.remove_response() or
Trace.simulate()

	tr_id (str) – ID string for the Trace for which the response cannot be removed

	
exception quakemigrate.util.StationFileHeaderException

	Bases: Exception

Custom exception to handle incorrect header columns in station file

	
exception quakemigrate.util.TimeSpanException

	Bases: Exception

Custom exception to handle case when the user has submitted a start time
that is after the end time.

	
quakemigrate.util.decimate(trace, sr)

	Decimate a trace to achieve the desired sampling rate, sr.

NOTE: data will be detrended and a cosine taper applied before
decimation, in order to avoid edge effects when applying the lowpass
filter.

	traceobspy.Trace object

	Trace to be decimated.

	srint

	Output sampling rate.

	traceobspy.Trace object

	Decimated trace.

	
quakemigrate.util.gaussian_1d(x, a, b, c)

	Create a 1-dimensional Gaussian function.

	Parameters

	
	x (array-like) – Array of x values

	a (float / int) – Amplitude (height of Gaussian)

	b (float / int) – Mean (centre of Gaussian)

	c (float / int) – Sigma (width of Gaussian)

	Returns

	f – 1-dimensional Gaussian function

	Return type

	function

	
quakemigrate.util.gaussian_3d(nx, ny, nz, sgm)

	Create a 3-dimensional Gaussian function.

	Parameters

	
	nx (array-like) – Array of x values

	ny (array-like) – Array of y values

	nz (array-like) – Array of z values

	sgm (float / int) – Sigma (width of gaussian in all directions)

	Returns

	f – 3-dimensional Gaussian function

	Return type

	function

	
quakemigrate.util.logger(logstem, log, loglevel='info')

	Simple logger that will output to both a log file and stdout.

	Parameters

	
	logstem (str) – Filestem for log file.

	log (bool) – Toggle for logging - default is to only print information to stdout.
If True, will also create a log file.

	loglevel (str, optional) – Toggle for logging level - default is to print only “info” messages to
log. To print more detailed “debug” messages, set to “debug”.

	
quakemigrate.util.make_directories(run, subdir=None)

	Make run directory, and optionally make subdirectories within it.

	Parameters

	
	run (pathlib Path object) – Location of parent output directory, named by run name.

	subdir (string, optional) – subdir to make beneath the run level.

	
quakemigrate.util.time2sample(time, sampling_rate)

	Utility function to convert from seconds and sampling rate to number of
samples.

	Parameters

	
	time (float) – Time to convert

	sampling_rate (int) – Sampling rate of input data/sampling rate at which to compute
the coalescence function.

	Returns

	out – Time that correpsonds to an integer number of samples at a specific
sampling rate.

	Return type

	int

	
quakemigrate.util.timeit(*args_, **kwargs_)

	Function wrapper that measures the time elapsed during its execution.

	
quakemigrate.util.trim2sample(time, sampling_rate)

	Utility function to ensure time padding results in a time that is an
integer number of samples.

	Parameters

	
	time (float) – Time to trim.

	sampling_rate (int) – Sampling rate of input data/sampling rate at which to compute
the coalescence function.

	Returns

	out – Time that correpsonds to an integer number of samples at a specific
sampling rate.

	Return type

	int

	
quakemigrate.util.upsample(trace, upfactor)

	Upsample a data stream by a given factor, prior to decimation. The
upsampling is done using a linear interpolation.

	Parameters

	
	trace (obspy.Trace object) – Trace to be upsampled.

	upfactor (int) – Factor by which to upsample the data in trace.

	Returns

	out – Upsampled trace.

	Return type

	obpsy.Trace object

	
quakemigrate.util.wa_response(convert='DIS2DIS', obspy_def=True)

	Generate a Wood Anderson response dictionary.

	Parameters

	
	convert ({'DIS2DIS', 'VEL2VEL', ‘VEL2DIS'}) – Type of output to convert between; determines the number of complex
zeros used.

	obspy_def (bool, optional) – Use the ObsPy definition of the Wood Anderson response (Default).
Otherwise, use the IRIS/SAC definition.

	Returns

	WOODANDERSON – Poles, zeros, sensitivity and gain of the Wood-Anderson torsion
seismograph.

	Return type

	dict

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 quakemigrate	

 	
 	
 quakemigrate.core	

 	
 	
 quakemigrate.core.lib	

 	
 	
 quakemigrate.export	

 	
 	
 quakemigrate.export.to_mfast	

 	
 	
 quakemigrate.export.to_nlloc	

 	
 	
 quakemigrate.export.to_obspy	

 	
 	
 quakemigrate.export.to_snuffler	

 	
 	
 quakemigrate.io	

 	
 	
 quakemigrate.io.amplitudes	

 	
 	
 quakemigrate.io.availability	

 	
 	
 quakemigrate.io.core	

 	
 	
 quakemigrate.io.cut_waveforms	

 	
 	
 quakemigrate.io.data	

 	
 	
 quakemigrate.io.scanmseed	

 	
 	
 quakemigrate.io.triggered_events	

 	
 	
 quakemigrate.lut	

 	
 	
 quakemigrate.lut.create_lut	

 	
 	
 quakemigrate.lut.lut	

 	
 	
 quakemigrate.plot	

 	
 	
 quakemigrate.plot.event	

 	
 	
 quakemigrate.plot.phase_picks	

 	
 	
 quakemigrate.plot.trigger	

 	
 	
 quakemigrate.signal	

 	
 	
 quakemigrate.signal.local_mag	

 	
 	
 quakemigrate.signal.local_mag.amplitude	

 	
 	
 quakemigrate.signal.local_mag.local_mag	

 	
 	
 quakemigrate.signal.local_mag.magnitude	

 	
 	
 quakemigrate.signal.onsets	

 	
 	
 quakemigrate.signal.onsets.base	

 	
 	
 quakemigrate.signal.onsets.stalta	

 	
 	
 quakemigrate.signal.pickers	

 	
 	
 quakemigrate.signal.pickers.base	

 	
 	
 quakemigrate.signal.pickers.gaussian	

 	
 	
 quakemigrate.signal.scan	

 	
 	
 quakemigrate.signal.trigger	

 	
 	
 quakemigrate.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	A0 (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	add_stream() (quakemigrate.io.data.WaveformData method), [1]

 	amp (quakemigrate.signal.local_mag.local_mag.LocalMag attribute)

 	amp_feature (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	amp_multiplier (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	Amplitude (class in quakemigrate.signal.local_mag.amplitude)

 	
 	append() (quakemigrate.io.scanmseed.ScanmSEED method), [1]

 	Archive (class in quakemigrate.io.data)

 	archive_path (quakemigrate.io.data.Archive attribute)

 	ArchiveEmptyException

 	ArchiveFormatException

 	ArchivePathStructureError

 	availability (quakemigrate.io.data.WaveformData attribute)

B

 	
 	BadUpfactorException

 	bandpass_filter (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	
 	bandpass_highcut (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	bandpass_lowcut (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

C

 	
 	calc_magnitude() (quakemigrate.signal.local_mag.local_mag.LocalMag method), [1]

 	calculate_mad() (in module quakemigrate.signal.trigger)

 	calculate_magnitudes() (quakemigrate.signal.local_mag.magnitude.Magnitude method), [1]

 	calculate_onsets() (quakemigrate.signal.onsets.base.Onset method), [1]

 	(quakemigrate.signal.onsets.stalta.STALTAOnset method), [1]

 	cell_count (quakemigrate.lut.lut.Grid3D attribute)

 	cell_size (quakemigrate.lut.lut.Grid3D attribute)

 	CentredSTALTAOnset (class in quakemigrate.signal.onsets.stalta)

 	
 	ChannelNameException

 	chunks2trace() (in module quakemigrate.signal.trigger)

 	ClassicSTALTAOnset (class in quakemigrate.signal.onsets.stalta)

 	compute_traveltimes() (in module quakemigrate.lut.create_lut)

 	continuous_scanmseed_write (quakemigrate.signal.scan.QuakeScan attribute)

 	coord2grid() (quakemigrate.lut.lut.Grid3D method), [1]

 	coord_proj (quakemigrate.lut.lut.Grid3D attribute)

 	cut_waveform_format (quakemigrate.signal.scan.QuakeScan attribute)

D

 	
 	DataGapException

 	DateFormatter (class in quakemigrate.util)

 	decimate() (in module quakemigrate.util)

 	(quakemigrate.lut.lut.Grid3D method), [1]

 	
 	DEFAULT_GAUSSIAN_FIT (quakemigrate.signal.pickers.gaussian.GaussianPicker attribute)

 	detect() (quakemigrate.signal.scan.QuakeScan method), [1]

 	dist_filter (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

E

 	
 	empty() (quakemigrate.io.scanmseed.ScanmSEED method), [1]

 	
 	endtime (quakemigrate.io.data.WaveformData attribute)

 	event_summary() (in module quakemigrate.plot.event)

F

 	
 	filter_corners (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	filtered_signal (quakemigrate.io.data.WaveformData attribute)

 	find_max_coa() (in module quakemigrate.core.lib)

 	
 	format (quakemigrate.io.data.Archive attribute)

 	fraction_tt (quakemigrate.lut.lut.LUT attribute)

 	(quakemigrate.signal.pickers.gaussian.GaussianPicker attribute)

G

 	
 	gaussian_1d() (in module quakemigrate.util)

 	gaussian_3d() (in module quakemigrate.util)

 	gaussian_halfwidth() (quakemigrate.signal.onsets.base.Onset method)

 	(quakemigrate.signal.onsets.stalta.STALTAOnset method)

 	GaussianPicker (class in quakemigrate.signal.pickers.gaussian)

 	get_amplitudes() (quakemigrate.signal.local_mag.amplitude.Amplitude method), [1]

 	get_grid_extent() (quakemigrate.lut.lut.Grid3D method)

 	
 	get_real_waveforms() (quakemigrate.io.data.WaveformData method)

 	get_wa_waveform() (quakemigrate.io.data.WaveformData method), [1]

 	Grid3D (class in quakemigrate.lut.lut)

 	grid_corners (quakemigrate.lut.lut.Grid3D attribute), [1]

 	grid_extent (quakemigrate.lut.lut.Grid3D attribute)

 	grid_proj (quakemigrate.lut.lut.Grid3D attribute)

 	grid_xyz (quakemigrate.lut.lut.Grid3D attribute), [1]

H

 	
 	highpass_filter (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	
 	highpass_freq (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

I

 	
 	index2coord() (quakemigrate.lut.lut.Grid3D method), [1]

 	index2grid() (quakemigrate.lut.lut.Grid3D method), [1]

 	
 	InvalidThresholdMethodException

 	InvalidVelocityModelHeader

L

 	
 	ll_corner (quakemigrate.lut.lut.Grid3D attribute)

 	load() (quakemigrate.lut.lut.LUT method), [1]

 	loc_method (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	LocalMag (class in quakemigrate.signal.local_mag.local_mag)

 	locate() (quakemigrate.signal.scan.QuakeScan method), [1]

 	
 	log (quakemigrate.signal.scan.QuakeScan attribute)

 	logger() (in module quakemigrate.util)

 	(quakemigrate.io.core.Run method), [1]

 	loglevel (quakemigrate.io.core.Run attribute)

 	(quakemigrate.signal.scan.QuakeScan attribute)

 	LUT (class in quakemigrate.lut.lut)

M

 	
 	mad_multiplier (quakemigrate.signal.trigger.Trigger attribute)

 	mad_window_length (quakemigrate.signal.trigger.Trigger attribute)

 	mag (quakemigrate.signal.local_mag.local_mag.LocalMag attribute)

 	Magnitude (class in quakemigrate.signal.local_mag.magnitude)

 	mags (quakemigrate.signal.scan.QuakeScan attribute)

 	MagsTypeError

 	make_directories() (in module quakemigrate.util)

 	
 	marginal_window (quakemigrate.signal.scan.QuakeScan attribute)

 	(quakemigrate.signal.trigger.Trigger attribute)

 	max_extent (quakemigrate.lut.lut.LUT attribute)

 	max_traveltime (quakemigrate.lut.lut.LUT attribute), [1]

 	mean_magnitude() (quakemigrate.signal.local_mag.magnitude.Magnitude method), [1]

 	migrate() (in module quakemigrate.core.lib)

 	min_event_interval (quakemigrate.signal.trigger.Trigger attribute), [1]

 	minimum_repeat (quakemigrate.signal.trigger.Trigger attribute)

N

 	
 	n_cores (quakemigrate.signal.scan.QuakeScan attribute)

 	name (quakemigrate.io.core.Run attribute), [1]

 	nlloc_obs() (in module quakemigrate.export.to_nlloc)

 	node_count (quakemigrate.lut.lut.Grid3D attribute), [1]

 	node_spacing (quakemigrate.lut.lut.Grid3D attribute), [1]

 	noise_filter (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	
 	noise_measure (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	noise_window (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	normalise_coalescence (quakemigrate.signal.trigger.Trigger attribute)

 	NoScanMseedDataException

 	NoStationAvailabilityDataException

 	NoTriggerFilesFound

 	NyquistException

O

 	
 	Onset (class in quakemigrate.signal.onsets.base)

 	
 	onset_centred (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	OnsetTypeError

P

 	
 	p_bp_filter (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	p_onset_win (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	pad (quakemigrate.signal.trigger.Trigger attribute)

 	pad() (quakemigrate.signal.onsets.base.Onset method)

 	path (quakemigrate.io.core.Run attribute)

 	path_structure() (quakemigrate.io.data.Archive method), [1]

 	PeakToTroughError

 	phase_picks (quakemigrate.signal.pickers.gaussian.GaussianPicker attribute)

 	PhasePicker (class in quakemigrate.signal.pickers.base)

 	phases (quakemigrate.lut.lut.LUT attribute)

 	pick_filter (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	pick_phases() (quakemigrate.signal.pickers.base.PhasePicker method), [1]

 	(quakemigrate.signal.pickers.gaussian.GaussianPicker method), [1]

 	pick_summary() (in module quakemigrate.plot.phase_picks)

 	pick_threshold (quakemigrate.signal.pickers.gaussian.GaussianPicker attribute)

 	picker (quakemigrate.signal.scan.QuakeScan attribute)

 	PickerTypeError

 	PickOrderException

 	plot() (quakemigrate.lut.lut.LUT method), [1]

 	(quakemigrate.signal.pickers.base.PhasePicker method), [1]

 	(quakemigrate.signal.pickers.gaussian.GaussianPicker method)

 	
 	plot_amplitudes() (quakemigrate.signal.local_mag.magnitude.Magnitude method), [1]

 	plot_event_summary (quakemigrate.signal.scan.QuakeScan attribute)

 	plot_event_video (quakemigrate.signal.scan.QuakeScan attribute)

 	plot_picks (quakemigrate.signal.pickers.base.PhasePicker attribute)

 	(quakemigrate.signal.pickers.gaussian.GaussianPicker attribute)

 	position (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	post_cut (quakemigrate.signal.scan.QuakeScan attribute)

 	post_pad (quakemigrate.io.data.WaveformData attribute)

 	(quakemigrate.signal.onsets.base.Onset attribute), [1]

 	(quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	(quakemigrate.signal.scan.QuakeScan attribute)

 	pre_cut (quakemigrate.signal.scan.QuakeScan attribute)

 	pre_filt (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	pre_pad (quakemigrate.io.data.WaveformData attribute)

 	(quakemigrate.signal.onsets.base.Onset attribute), [1]

 	(quakemigrate.signal.onsets.stalta.STALTAOnset attribute), [1]

 	(quakemigrate.signal.scan.QuakeScan attribute)

 	pre_process() (in module quakemigrate.signal.onsets.stalta)

 	precision (quakemigrate.lut.lut.Grid3D attribute), [1]

 	prominence_multiplier (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

Q

 	
 	quakemigrate.core (module)

 	quakemigrate.core.lib (module)

 	quakemigrate.export (module)

 	quakemigrate.export.to_mfast (module)

 	quakemigrate.export.to_nlloc (module)

 	quakemigrate.export.to_obspy (module)

 	quakemigrate.export.to_snuffler (module)

 	quakemigrate.io (module)

 	quakemigrate.io.amplitudes (module)

 	quakemigrate.io.availability (module)

 	quakemigrate.io.core (module)

 	quakemigrate.io.cut_waveforms (module)

 	quakemigrate.io.data (module)

 	quakemigrate.io.scanmseed (module)

 	quakemigrate.io.triggered_events (module)

 	quakemigrate.lut (module)

 	quakemigrate.lut.create_lut (module)

 	quakemigrate.lut.lut (module)

 	
 	quakemigrate.plot (module)

 	quakemigrate.plot.event (module)

 	quakemigrate.plot.phase_picks (module)

 	quakemigrate.plot.trigger (module)

 	quakemigrate.signal (module)

 	quakemigrate.signal.local_mag (module)

 	quakemigrate.signal.local_mag.amplitude (module)

 	quakemigrate.signal.local_mag.local_mag (module)

 	quakemigrate.signal.local_mag.magnitude (module)

 	quakemigrate.signal.onsets (module)

 	quakemigrate.signal.onsets.base (module)

 	quakemigrate.signal.onsets.stalta (module)

 	quakemigrate.signal.pickers (module)

 	quakemigrate.signal.pickers.base (module)

 	quakemigrate.signal.pickers.gaussian (module)

 	quakemigrate.signal.scan (module)

 	quakemigrate.signal.trigger (module)

 	quakemigrate.util (module)

 	QuakeScan (class in quakemigrate.signal.scan)

R

 	
 	raw_waveforms (quakemigrate.io.data.WaveformData attribute)

 	read_all_stations (quakemigrate.io.data.Archive attribute)

 	(quakemigrate.io.data.WaveformData attribute)

 	read_availability() (in module quakemigrate.io.availability)

 	read_lut() (in module quakemigrate.io.core)

 	read_nlloc() (in module quakemigrate.lut.create_lut)

 	read_quakemigrate() (in module quakemigrate.export.to_obspy)

 	read_response_inv() (in module quakemigrate.io.core)

 	read_scanmseed() (in module quakemigrate.io.scanmseed)

 	read_stations() (in module quakemigrate.io.core)

 	read_triggered_events() (in module quakemigrate.io.triggered_events)

 	
 	read_vmodel() (in module quakemigrate.io.core)

 	read_waveform_data() (quakemigrate.io.data.Archive method), [1]

 	remove_full_response (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	resample (quakemigrate.io.data.Archive attribute)

 	response_inv (quakemigrate.io.data.Archive attribute)

 	ResponseNotFoundError

 	ResponseRemovalError

 	Run (class in quakemigrate.io.core)

 	run (quakemigrate.signal.scan.QuakeScan attribute)

 	(quakemigrate.signal.trigger.Trigger attribute)

 	run_path (quakemigrate.io.core.Run attribute)

S

 	
 	s_bp_filter (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	s_onset_win (quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	sac_mfast() (in module quakemigrate.export.to_mfast)

 	sample_size (quakemigrate.io.data.WaveformData attribute)

 	sampling_rate (quakemigrate.io.data.WaveformData attribute)

 	(quakemigrate.signal.onsets.base.Onset attribute)

 	(quakemigrate.signal.onsets.stalta.STALTAOnset attribute)

 	(quakemigrate.signal.scan.QuakeScan attribute), [1]

 	save() (quakemigrate.lut.lut.LUT method), [1]

 	ScanmSEED (class in quakemigrate.io.scanmseed)

 	serve_traveltimes() (quakemigrate.lut.lut.LUT method), [1]

 	signal (quakemigrate.io.data.WaveformData attribute)

 	signal_window (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	snuffler_markers() (in module quakemigrate.export.to_snuffler)

 	snuffler_stations() (in module quakemigrate.export.to_snuffler)

 	
 	sta_lta_centred() (in module quakemigrate.signal.onsets.stalta)

 	sta_lta_onset() (in module quakemigrate.signal.onsets.stalta)

 	stage (quakemigrate.io.core.Run attribute)

 	STALTAOnset (class in quakemigrate.signal.onsets.stalta)

 	starttime (quakemigrate.io.data.WaveformData attribute)

 	static_threshold (quakemigrate.signal.trigger.Trigger attribute)

 	station_corrections (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	station_extent (quakemigrate.lut.lut.LUT attribute)

 	station_filter (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	StationFileHeaderException

 	stations (quakemigrate.io.data.Archive attribute)

 	(quakemigrate.io.data.WaveformData attribute)

 	stations() (in module quakemigrate.io.core)

 	stations_xyz (quakemigrate.lut.lut.LUT attribute), [1]

 	stream (quakemigrate.io.scanmseed.ScanmSEED attribute)

 	subname (quakemigrate.io.core.Run attribute)

T

 	
 	threads (quakemigrate.signal.scan.QuakeScan attribute)

 	threshold_method (quakemigrate.signal.trigger.Trigger attribute)

 	time2sample() (in module quakemigrate.util)

 	time_step (quakemigrate.signal.scan.QuakeScan attribute)

 	timeit() (in module quakemigrate.util)

 	times() (quakemigrate.io.data.WaveformData method), [1]

 	TimeSpanException

 	
 	timestep (quakemigrate.signal.scan.QuakeScan attribute)

 	trace_filter (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	traveltime_to() (quakemigrate.lut.lut.LUT method), [1]

 	traveltimes (quakemigrate.lut.lut.LUT attribute)

 	Trigger (class in quakemigrate.signal.trigger)

 	trigger() (quakemigrate.signal.trigger.Trigger method), [1]

 	trigger_summary() (in module quakemigrate.plot.trigger)

 	trim2sample() (in module quakemigrate.util)

U

 	
 	unit_conversion_factor (quakemigrate.lut.lut.Grid3D attribute), [1]

 	unit_name (quakemigrate.lut.lut.Grid3D attribute), [1]

 	update_lut() (in module quakemigrate.lut)

 	
 	upfactor (quakemigrate.io.data.Archive attribute)

 	upsample() (in module quakemigrate.util)

 	ur_corner (quakemigrate.lut.lut.Grid3D attribute)

 	use_hyp_dist (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

V

 	
 	velocity_model (quakemigrate.lut.lut.LUT attribute)

W

 	
 	wa_response() (in module quakemigrate.util)

 	water_level (quakemigrate.signal.local_mag.amplitude.Amplitude attribute)

 	WaveformData (class in quakemigrate.io.data)

 	weighted_mean (quakemigrate.signal.local_mag.magnitude.Magnitude attribute)

 	write() (quakemigrate.io.scanmseed.ScanmSEED method), [1]

 	(quakemigrate.signal.pickers.base.PhasePicker method), [1]

 	
 	write_amplitudes() (in module quakemigrate.io.amplitudes)

 	write_availability() (in module quakemigrate.io.availability)

 	write_cut_waveforms (quakemigrate.signal.scan.QuakeScan attribute)

 	write_cut_waveforms() (in module quakemigrate.io.cut_waveforms)

 	write_triggered_events() (in module quakemigrate.io.triggered_events)

 	written (quakemigrate.io.scanmseed.ScanmSEED attribute)

X

 	
 	xy_files (quakemigrate.signal.scan.QuakeScan attribute)

 	(quakemigrate.signal.trigger.Trigger attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/QMlogoBig.png

_static/QMlogoBig.png

_images/LUT_definition.png
Lower-left corner

Upper-right corner

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 QuakeMigrate

 		
 Installation

 		
 Supported operating systems

 		
 Prerequisites

 		
 Setting up an environment

 		
 C compilers

 		
 Installing

 		
 From source

 		
 pip install

 		
 conda install

 		
 Testing your installation

 		
 Notes

 		
 Tutorials

 		
 The traveltime lookup table

 		
 Defining the underlying 3-D grid

 		
 Computing traveltimes

 		
 Saving your LUT

 		
 Reading in a saved LUT

 		
 Source code

 		
 quakemigrate.core

 		
 Functions

 		
 quakemigrate.export

 		
 quakemigrate.export.to_mfast

 		
 quakemigrate.export.to_nlloc

 		
 quakemigrate.export.to_obspy

 		
 quakemigrate.export.to_snuffler

 		
 quakemigrate.io

 		
 quakemigrate.io.amplitudes

 		
 quakemigrate.io.availability

 		
 quakemigrate.io.core

 		
 quakemigrate.io.cut_waveforms

 		
 quakemigrate.io.data

 		
 quakemigrate.io.scanmseed

 		
 quakemigrate.io.triggered_events

 		
 quakemigrate.lut package

 		
 quakemigrate.lut.create_lut

 		
 quakemigrate.lut.lut

 		
 quakemigrate.plot

 		
 quakemigrate.plot.event

 		
 quakemigrate.plot.phase_picks

 		
 quakemigrate.plot.trigger

 		
 quakemigrate.signal

 		
 Subpackages

 		
 quakemigrate.signal.scan

 		
 quakemigrate.signal.trigger

 		
 quakemigrate.util

_static/up-pressed.png

_static/up.png

